

APS Upgrade: Cross-Talk Simulation Between Q2 and L-Bend Magnets of APS-U

Melike Abliz PSC, APS-U

Mark Jaski Argonne National Laboratory

ASD Seminar July 12, 2017

OVERVIEW

- 1) Confirmations of the Q2 and M1 magnets
- 2) Combined model of Q2 with M1 with the same layout in the storage ring
- Comparison of the main and multipole fields along the full trajectory before and after their cross-talk with my simulation

INTRODUCTION

Q2 is a quadrupole and L-bend (M1) is a dipole magnet. They were designed by M. Jaski for the 67pm (V6) lattice of the APS-U. However, they will be installed in the storage ring with a yaw angle with respect to each other by a limited distance between them.

The purpose of the magnetic simulation of Q2 with yawed M1 together is to determine:

- 1) Whether the designs of the Q2 and M1 magnets are acceptable from the magnetic crosstalk point of view
- 2) Whether magnetic measurement data of the individual magnets will still be applicable during installation in the storage ring. Impossible to measure the field along the trajectory. Rely on the cross-talk simulation results to decide the measurement data of these individual magnets
- 3) Whether the full trajectory of the electron beam from upstream of Q2 to downstream of M1 matches with the required lattice trajectory

ENLARGED LATTICE AROUND THE Q2 AND M1

M1 is yawed by 0.894° relative to Q2

End shield

160

End shield

SIMULATION PROCESS:

- 1) Simulation of the single straight M1 magnet ------ Straight M1 Case 1
- 2) Simulation of the single Q2 quadrupole magnet _____ Q2 Case 2
- 3) Simulation of a yawed M1 (coordinate transformation) Yawed M1
- 4) Simulation of Q2 with yawed M1 together

Case 3

Case 4

Yawed M1

REQUIRED TOLERANCE FOR THE CROSS-TALK:

All the integrated harmonics from the cross-talk should be less than 0.1% compared to the main fields

*The simulation differences of the integrated main fields should be less than 0.1%

Case 1 **SIMULATION OF THE SINGLE STRAIGHT M1**

Computed the field and its multipoles within a 10 mm radius circle centered at the beam position and integrated them over the beam trajectory.

Case 1SIMULATED 2D-ELECTRON BEAM TRAJECTORYStraight M1IN THE SINGLE STRAIGHT M1

Case 1 SIMULATION RESULTS OF THE DIPOLE, QUADRUPOLE, AND Straight M1 SEXTUPOLE FIELDS ALONG THE ELECTRON BEAM TRAJECTORY IN THE SINGLE STRAIGHT M1

Case 2 SIMULATION OF THE SINGLE Q2 MAGNET

SIMULATED QUADRUPOLE FIELD ALONG THE LENGTH OF THE Q2 MAGNET

16/Jan/2017 16:06:43

SIMULATION RESULTS OF THE MAIN AND HARMONIC INTEGRATED FIELDS OF THE Q2 AND STRAIGHT M1

Main current = 353.56 A

	b0	b1	b2	b3	b4	b5	b6	b7	b8	b9	unit
Along the beam trajectory (not measureable)	-487369 -487243	-577 -502	734 832	-35	470	262	315	38	6	-32	cgs
	10000 10000	11.8 <mark>10.3</mark>	-15.1 -17.1	0.7 <mark>0.9</mark>	-9.6 -9.8	-5.4 -5.2	-6.5 - <mark>6.3</mark>	-0.8 -0.8	-0.1 -0.2	0.6 0.5	
	b0	b1	b2	b3	b4	b5	b6	b7	b8	b9	unit
Along a straight	-487354	-279	676	-119	290	38	273	14	36	-7	cgs
line at gap center (measurable)	10000 10000	5.7 5.3	-13.8 -16.2	2.4 2.8	-5.9 -6	-0.8 -0.8	-5.6 -5.1	-0.3 -0.2	-0.7 -0.8	0.1 0.1	

Ca	se	2

Case

Straight M1

Current = 161.4 A

Black numbers: from M. Abliz Red numbers: from M. Jaski

The numbers are in agreement

	b0	b1	b2	b3	b4	b5	b6	b7	b8	b9	unit
In 10 mm radius from the gap	0	132228	0	4	0	-78	0	0	0	-54	cgs
center	0	10000	0	0.3	0	-5.9	0	0	0	-4.1	
(measurable)	0	10000	0	0	0	-6.3	0	0	0	-4.3	

REQUIRED AND CONFIRMED RESULTS OF THE Q2 AND STRAIGHT M1

Case 1 Straight M1 (dipole)

	Total Length	Total Angle	Peak Field	Integrated By field
Required	209.6 cm	1.395 deg.	-6360 G	487270 G-cm
Modeling Results (M. Abliz) (Main current = 353.56 A)	209.6 cm	1.3953 deg.	-6395 G	487369 G-cm

Case 2	Q2 (quadrupole)

	Total Length	Total Quadrupole field
Required	22.5 cm	132000 G
Modeling Results (M. Abliz) (Current= 161.4A)	22.5 cm	132228 G

CROSS-TALK STARTS FROM HERE....

MODELING Q2 AND M1 TOGETHER

LAYOUT OF THE Q2 WITH YAWED M1 TOGETHER

Origin of the coordinate is located at center of the Q2 magnet

Case 3 SIMULATION OF A YAWED M1 (COORDINATE TRANSFORMATION)

Required position of M1

Case 3 TRAJECTORY OF THE ELECTRON BEAM IN THE YAWED M1

Case 3 ELECTRON TRAJECTORIES IN THE YAWED M1

Argonne

QUADRUPOLE FIELD ALONG THE FULL TRAJECTORY

Case 3 & 4

Case 3 & 4 DIPOLE FIELD ALONG THE FULL ELECTRON TRAJECTORY

INTEGRATED MULTIPOLE FIELDS ALONG THE FULL TRAJECTORY

Before cross-talk	b0	b1	b2	b3	b4	b5	b6	b7	b8	b9	unit
Case 2 + Case 3	-487451	131716	764	-30	475	169	307	35	6	-78	cgs
						-					
After cross-talk	b0	b1	b2	b3	b4	b5	b6	b7	b8	b9	unit
Case 4	-487452	131496	751	-28	487	224	307	45	-7	-64	cgs

Differences between Case 4 and Case 2 + Case3

	b0	b1	b2	b3	b4	b5	b6	b7	b8	b9	unit
cross-talk	1	-220	-13	-2	12	55	0	10	-13	-14	cgs

CONCLUSIONS

- 1) The designs of the Q2 and M1 magnets are acceptable from the cross-talk simulation results
- 2) The full trajectory meets the required lattice trajectory
- 3) The maximum effect to the multipoles caused by the cross-talk was only 0.045% which is much smaller than the limitation of < 0.1%
- 4) For all cases of the cross-talk simulation, the multipole fields were computed within a 10 mm radius circle centered at beam trajectory along the length
- 5) The integrated quadrupole field of the Q2 magnet dropped by 220 G out of 131,716 G (0.1%) from the M1
- The integrated M1 dipole field only increased by 1 G cm out of 487451 G-cm (< 0.1%) from the Q2 magnet
- 7) We'll rely on this cross-talk simulation results to decide the individual measurement data of Q2 and M1 magnets will be applicable during installation in the storage ring

THANK YOU!

