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Outline
 Motivation and purpose

 Introduction to the 42-pm APS-U lattice

 Heating loads from synchrotron radiation

 Wakefields and impedances

– Introduction

– Collective effects driven by longitudinal wakefields

– Examples: photon absorbers and the BPM-bellows assembly

– Rf heating concerns

– Collective effects driven by transverse wakefields

 Joe Calvey's turn: gas scattering lifetime and ion effects
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Motivation and purpose
 Accelerator design is a highly collaborative effort
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Motivation and purpose
 Accelerator design is a highly collaborative effort

 We thought it might be useful to prelude Ben Stillwell's 
vacuum design seminar with some of the relevant physics 

3Ryan Lindberg – ASD Seminar – June 7, 2017

Performance
requirements

“Real-world”
constraints

Physics
consequences

Vacuum
design

Lattice
design

More arrows and
boxes are possible...



42-pm 7-bend achromat lattice with 
reverse bends
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42-pm 7-bend achromat lattice with 
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Transverse 
gradient dipoles

Longitudinal 
gradient dipoles

Reverse bending magnets 
(displaced quadrupoles)

Smaller beta-functions 
that are better matched 

for x-ray production

Larger beta functions and dispersion to reduce sextupole strength

M. Borland et al. Proc. 
IPAC15, 1776–1779 (2015); 

L. Farvacque et al. Proc. 
2013 IPAC, 79 (2013).



X-ray brightness increases by ~60% by 
going from the 67-pm to the 42-pm lattice
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Curves are envelopes for a set of 3.7-m-long 
SCUs in 324 bunch mode with εx = εy

Courtesy 
M. Borland



Synchrotron radiation heating
 Each of the 7 gradient dipoles radiate copious x-rays, and the 6 reverse bending 

magnets add additional synchrotron radiation loads

 Vacuum engineers have taken the lead on computing synchrotron radiation loads
– Ray tracing tools within CAD models
– SynRad modeling of emission, propagation, and scattering (Jason Carter)
– Inclusion of mis-steered beams
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Synchrotron radiation heating
 Each of the 7 gradient dipoles radiate copious x-rays, and the 6 reverse bending 

magnets add additional synchrotron radiation loads

 Vacuum engineers have taken the lead on computing synchrotron radiation loads
– Ray tracing tools within CAD models
– SynRad modeling of emission, propagation, and scattering (Jason Carter)
– Inclusion of mis-steered beams

 The required absorbers serve two primary functions
– Protect sensitive components like BPMs, bellows, etc.
– Take away heat and prevent chamber failure

 Electrons produce wakefields as they pass by absorbers (or any other vacuum 
component), which can perturb trailing electrons and result in rf heating, 
instabilities, and potential beam loss
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v = 0 γ  >> 1 v → c

Spherically 
symmetric

Compressed 
into angle   

~1/γ

Flattened 
into 

pancake

Perfectly conducting chamber

v v

Field lines can be arranged to satisfy appropriate 
boundary conditions for arbitrary geometries
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Geometric wakefields/impedance are generated 
by changes in the vacuum chamber cross section

 The resulting electromagnetic fields lead to wakefields that are behind the 
exciting charge (since v ≈ c)

 The magnitude of the wakefield depends on the change in the chamber 
cross section and how fast that change occurs
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Geometric wakefields/impedance are generated 
by changes in the vacuum chamber cross section

 The resulting electromagnetic fields lead to wakefields that are behind the 
exciting charge (since v ≈ c)

 The magnitude of the wakefield depends on the change in the chamber 
cross section and how fast that change occurs

 In addition, there are resistive wall wakefields due to the finite resistivity 
of the chamber walls
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Changes in vacuum 
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Longitudinal wakefields W
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v ≈ c

Drive electronTest electron
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Not great design:
1. Tapers should come both in and 

out (slope < 0.1 if possible)
2. Lack of mirror symmetry in x 

drives transverse wakefields 
that could increase emittance

x

z
x

z

x

y

x

y

Circle: 
1. Easier to make
2. Present design  

for absorbers in 
FODO section

Wedge: 
1. Smaller 

impedance
2. Present 

default design

Better design:
Choice in cross section

n = f  / f0
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Bunch lengthening and microwave 

instability threshold largely set by Im[Z||(k)/k]
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Pass 380Pass 0 ≈ Pass 1140

48 bunch mode: single bunch I = 4.2 mA
Microwave 

instability threshold 
I

MW   
≈ 1.7 mA



Energy loss and rf-heating is given by the 

overlap of the beam spectrum with Re[Z||(k)]
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overlap of the beam spectrum with Re[Z||(k)]

 Flange gap with assumed 1 mm depth and 
0.2 mm width has high resonant frequencies
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Energy loss and rf-heating is given by the 

overlap of the beam spectrum with Re[Z||(k)]

 Flange gap with assumed 1 mm depth and 
0.2 mm width has high resonant frequencies

 Increasing gap (cavity) width lowers 
resonances and increases impedance
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Energy loss and rf-heating is given by the 

overlap of the beam spectrum with Re[Z||(k)]

 Flange gap with assumed 1 mm depth and 
0.2 mm width has high resonant frequencies

 Increasing gap (cavity) width lowers 
resonances and increases impedance

 Increasing depth is even worse

 Rf shielding is being considered
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Energy loss and rf-heating is given by the 

overlap of the beam spectrum with Re[Z||(k)]
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Energy loss and rf-heating is given by the 

overlap of the beam spectrum with Re[Z||(k)]

 Gate valves are known to heat up in 
the present APS

 Resonance has much more overlap 
with the e-beam spectrum

 Gate valve is a shelf item and its 
design will probably not be changed
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different dimensions

Plate poor conductors with good 
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Effects of transverse impedance on 
electron beam

 Chambers that lack mirror symmetry drive monopole impedances that can 
increase the emittance

– Examples: crotch absorber, anti-chambers, my initial design of the photon absorbers
– This effect is lessened when chambers are far from beam
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 Panofsky-Wenzel theorem relates the transverse and longitudinal impedance via
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Conclusions
 Accelerator design is a highly collaborative effort that involves many people 

having a wide range of technical expertise

 Managing the synchrotron radiation heat loads is an important part of 
vacuum design 

 The impedance cost of vacuum components must be weighed when 
designing components (an ongoing process)

– Longitudinal impedance lengthens the bunch and may increase its energy 
spread (microwave instability)

– Longitudinal impedance also leads to rf heating that should be understood and 
controlled

– Transverse impedance can drive collective instabilities that may lead to 
emittance growth or, more typically, beam loss

 Joe Calvey will now continue with more on vacuum and ion effects...
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