

Crystal Experiments at SLAC FACET and ESTB

- U. Wienands (Argonne National Laboratory);
- B. Benson*, T. Markiewicz, T. Smith, J. Sheppard, M. Hogan, S. Gessner* (SLAC);
- U. Uggerhøj, T. Wistisen*, R. Mikkelsen* (U. Aarhus, DK);
- A. Mazzolari, E. Bagli*, L. Bandiera*, G. Germogli*, A. Sytov*, V. Guidi (U. Ferrara, IT);
- R. Holtzapple, S. Tucker*, K. McArdle* (California Polytechnic State University)
- * Student/postdoc

Crystalline Potentials

Si (111) Planes

Particle-Crystal Interaction

Phase Space (bent crystal)

Same topology as a (moving) rf bucket

Motivation (deflection)

- Bent crystals can deflect high energy beams with small bending radii (O(0.1m)). At 30 GeV, ≈ 1000T B-field(!)
 - lots of proton data, little data for high-energy e⁻ or e⁺
 - There is interest in crystal collimation for e⁺ and e⁻
 - Expected benefits in size and efficiency of collimation
 - Not enough data to actually design such a system
 - Possible application to ILC, LCLS-II
 - What channeling efficiency can one expect?
 - How does it scale with beam energy?
 - Can VR be used for beam collimation?

London

Hardware installed in the LHC

Two crystals installed in the IR7 (Beam1) during April 2014: (developed in the UA9 framework)

Silicon Strip crystal in the horizontal plane

And relative goniometers: (UA9 framework)

✓ Piezo actuator in closed loop (angular stage)
✓ Transparent during normal operation

Quasi-mosaic crystal in the vertical plane

Motivation (radiation)

There is interest in channeling radiation

- Intense γ ray production, can we demonstrate narrow-band?
- Use Crystal undulators with e⁻??
- Can we make use of VR radiation?
- γ rays have applications in materials science and radiography techniques
 - penetrating γ rays can radiograph thick pieces.
 - crystal targets have been used with some success in γ sources for photo-nuclear reactions.
- Can crystal sources become competitive to Compton sources?

Some Potential Applications

FACET and the End Station A Test Beam (ESTB)

- ESTB: up to 15 GeV e⁻, 5 Hz, ≤ 200 pC/pulse
 - "pulse stealing" from LCLS
- FACET: 20 GeV e⁺ or e⁻, 2 nC/pulse, 10 Hz, "20³ μm³"
- control of optics, momentum spread
 - both can provide relatively parallel beam (<10 µrad)
 - FACET has a e^- spectrometer downstream; $\approx 0.1\%$ resolution

T513/T523 Experiment Layout (ESTB)

Top View, not to scale

U. Wienands et al., Phys. Rev. Lett. 114, 074801 (2015)

<211>

X-ray Beam

eam

Main crystal features

- Crystal thickness 60±1 µm
 Once the crystal will be back in
 Ferrara we will measure crystal
 thickness with accuracy of a few nm.
- (111) bent planes (the best planes for channeling of negative particles).
- Bending angle 402±9 µrad (x-ray measured). If needed I can provide a value with lower uncertainty.

Si (111) Potential for T513 Crystal ($\rho = 0.15$ m)

 $\theta_{crit} = \sqrt{2U_0/E} \approx 80 \ \mu r @ 6.3 \ GeV$

T-513 being installed (by ESTB Group)

Chamber ("Kraken")

Beam finder wire installed for 1st beam

Mirror for angle readout

Crystal mounted in "Kraken" Chamber in ESA

Crystal-Rotation @ 4.2 GeV

https://www.sciencedaily.com/releases/2015/02/150225132110.htm

(Movie credit: T. Wistisen)

Triangle Plots

Colors rep. log(intensity). Crystal angles from fit to laser spot (est'd uncertainty 2...5 µrad)

Fit to Intensity Distribution

unfold 2 peaks + exponential dechanneling tail

Dechanneling Length of e⁻

Volume Reflection Angle

U. Wienands – ASD Seminar, 1-Feb-2017

Scattering in "Free" Direction

VR Collimator Concept

The T513 data can be used to investigate beam collimation:

VR-Deflector assisted swap-out dump

E212: First Channeling Data of 20 GeV e⁺ in Bent Crystal

Analysis of the "Quasi-Channeling Oscillations"

U. Wienands – ASD Seminar, 1-Feb-2017

Summary of Deflection Results

- Channeling efficiency ≈ 18...24 %, VR up to 95%
- Dechanneling length ≈ 40…60 µm
 - little dependence on the beam energy in our range (3.35...14 GeV)
- Surface transmission 57% (6.3 GeV)...65% (3.35 GeV)
 - calc: 57% @ 6.3 GeV
- Scattering is enhanced in the vertical plane for channeled particles
 - by roughly a factor 2 ($X_0 \rightarrow X_0/4$)
- Quasi-Channeling oscillations observed with e⁺ (and hints with e⁻).

Gamma-Ray Experiment (T523)

- Use sweeper dipole to dump electrons on 3C2 collimator
- Scintillating-Fiber calorimeter for gamma-spectroscopy
 - necessitates single-photon counting to get spectrum
 - Collimator in X to define angle of gammas
- Difficulties:
 - single-particle beam => "flying blind"
 - setup with full intensity
 - electrons dumped close to beam line
 - signal-to-noise ratio a concern

T513/T523 Experiment Layout (ESTB)

Top View, not to scale

Monolithic Undulator

Large amplitude, long period (LALP, Solov'yov *et al.*):

Small amplitude, short period (SASP, Kostyuk 2014):

"Slow" betatron oscillations, fast undulations

- 37 μm long, 120 periods, (110)
- 0.7 GeV @ 6.2 GeV *e*⁻
- 4 GeV@ 16.1 GeV e⁻
- K ≈ 0.07
 - $Si_{1-x}Ge_x$ -graded composition

Expected spectra, 16 GeV

Note: Spectral feature mostly from over-the-barrier motion as $R_{wigg} < R_c$

U. Wienands – ASD Seminar, 1-Feb-2017

Aarhus Monolithic Undulator

• 37 µm thick; 120 periods.

Crystal Alignment with Full Beam

Angular Distribution Aligned – Amorph

U. Wienands *et al.*, NIM-B (2017) (in press)

E212/T523 Summary

- Gamma rays detected from the crystals
 - In 2015 we saw evidence for channeling and VR gamma rays from the Ferrara bent Crystal (60 µm, 400 µrad, 0.15 m)
 - Gamma rays from 37-µm Aarhus Undulator seen this summer
- Clearest signals in intensity distributions
 - VR radiation from Ferrara crystal
 - Channeling radiation from Aarhus undulator
 - Signal/background ratio 1:1 -> 1:4
- Energy spectra have been difficult to acquire.

VR Undulator

Stack of bent crystals; T513-crystal-like

- Acceptance: $\theta_b \theta_{crit}$
 - $\sim 300 \,\mu \text{rad}$ for T513 xtal
- MS: 30 µrad @ 10 GeV
 - 10 periods: 135 µrad,
 < 300 µrad
- A 10 period undulator could work!

Beyond T523 and E212

- ESTB will go off-line soon for LCLS-II installation.
- FACET is off-line now for the same reason.
- ESTB to be reconnected to the linac mid-2017;
 - resume operation July...Oct. 2017; until June 2018
 - then down a year for LCLS-II install., back up July 2019.
 - same beam parameters as now.
- Potential interest from NIU to collaborate.

Thank you!

High-Intensity spectra (cont'd)

energy-weighted pulse height spectra of $\sum E(\gamma_n)$

