Analytical approaches to wakefield calculations

Stanislav Baturin Euclid TechLabs

10/26/2016

Outline

Introduction to the wakefield concepts

• Simple calculation of the wakefields

Wakefield based devices

Introduction to the wakefield concepts

Wakefield. Friend or foe?

• Beam energy spread

• Parasitic transverse momentum induction

• Negative effect on beam dynamics

Source of the wakefield

Disk loaded structure

Collimators and pipe transitions Structures with the "retarding" layer

Definition of the wakefield

Definition of the wakefield potential

Longitudinal wakefield potential

$$W_{z} = -\frac{1}{Q_{1}} \int_{-\infty}^{\infty} E_{z} \left(z, t = \frac{z+s}{c} \right) dz$$

Transverse wakefield potential

$$\vec{W}_{\perp} = \frac{1}{Q_1} \int_{-\infty}^{\infty} \vec{F} \left(z, t = \frac{z+s}{c} \right) dz$$

Energy change of the test particle

$$\Delta E = -Q_1 Q_2 W_z(s)$$

Calculation of the wakefields

Important theorems

A. Chao, Physics of Collective Beam Instabilities in High Energy Accelerators (Wiley and Sons, New York, 1993).

One more theorem

Relativistic Gauss Theorem

The Idea

Relativistic Gauss Theorem

S.S. Baturin, A.D. Kanareykin. PRL 113, 214801, 2014

The Method

Relativistic Gauss Theorem

Maxwell equations in vacuum channel

$$\begin{aligned} \nabla_{\perp} \cdot \mathbf{E}_{\perp} + i \nabla_{\perp} \times \mathbf{E}_{\perp} &= 4\pi\rho + \frac{\partial E_{z}}{\partial \zeta} - i \frac{\partial H_{z}}{\partial \zeta} \\ \nabla_{\perp} \cdot \mathbf{H}_{\perp} + i \nabla_{\perp} \times \mathbf{H}_{\perp} &= i \bigg(4\pi\rho + \frac{\partial E_{z}}{\partial \zeta} - i \frac{\partial H_{z}}{\partial \zeta} \bigg) \\ \zeta &= ct - z \end{aligned} \qquad \begin{aligned} h &= H_{x} + i H_{y} \\ e &= E_{x} + i E_{y} \\ \frac{\partial g_{z}}{\partial \chi} &= \frac{\partial}{\partial \zeta} (E_{z} - i H_{z}) \\ \omega &= x + i y \end{aligned}$$

$$2\frac{\partial e}{\partial \omega} = 2Q\delta(x')\delta(y') + \frac{\partial \tilde{g}_Z}{\partial \omega}$$

The Method

Relativistic Gauss Theorem

The Result

Relativistic Gauss Theorem

Longitudinal electromagnetic field

$$E_{z}(0^{+}) - iH_{z}(0^{+}) = -\frac{4Q}{a^{2}}\frac{d\chi}{d\omega}\left(\frac{d\chi}{d\omega}\right)^{*}\Big|_{\omega=\omega_{0}}$$

Transverse Lorentz force

$$F_{x}(s) + iF_{y}(s) = s \frac{4eQ}{a^{2}} \left(\frac{d^{2}\chi}{d\omega^{2}}\right)^{*} \frac{d\chi}{d\omega}\Big|_{\omega = \omega_{0}}$$

A. Chao, Physics of Collective Beam Instabilities in High Energy Accelerators (Wiley and Sons, New York, 1993).

Relativistic Gauss Theorem

S.S. Baturin, A.D. Kanareykin. PRL 113, 214801, 2014

Wakefield based devices

Wakefield accelerator

Example of Dielectric Wakefield Accelerator:

- <u>Dielectrics</u>: $\varepsilon = 4.4$ (cordierite-10 (alumina) low-loss ceramic,
 - ϵ = 5.7 diamond, ϵ = 3.7 quartz
- Electron beam parameter: $\sigma_z = 20-30$ um, Q = 1-3 nC, frequency 0.3-1.2 THz,
- Wakefield maximum 0.1-1.0 GV/m

Transformer ratio

 $_{1}E_{z}^{+'}$ max \boldsymbol{R} E_{\cdot} max

 $\Delta W^{+} = RW^{-}$

Wakefield accelerator

Now we define limits on wakefield maximum and transformer ratio.

The Result

Limiting Gradient

S.S. Baturin, A. Zholents to be published

Argonne studies of Wakefield Accelerator*

Driver
chargeApertureDriver
energyDesired
energy gainTransformer
ratio8nC2 mm400 MeV1.6 Gev5max(
$$E_z$$
) = 109 $\frac{MV}{m}$

*A. Zholents et al, Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment 829 February 2016

Now we will discuss wakefield application to the bunch diagnostics.

Slice Emittance Measurement

Bunch diagnostics in principle

Slice Emittance Measurement

Experimental results

S. Bettoni, P. Craievich, A. A. Lutman, 2 and M. Pedrozzi1 PR-AB 19, 021304 (2016)

Slice Emittance Measurement

Energy	140 MeV	1.4 GeV	14 GeV
bunch length	1 mm	100um	30 um
current	300 A	1 kA	3.5 kA
resolution	75 um	10 um	1.7 um

There are more applications that may take advantage of controllable wakefields.

 S. Antipov, S. Baturin et al. PRL 112, 114801 (2014)
P. Emma, M. Venturini, K. L. F. Bane, G. Stupakov et al. PRL 112, 034801

Subpicosecond Bunch Train Production

S. Antipov et al. PRL 108, 144801 (2012)

Conclusion

- Wakefields are very important part of accelerator science and technology
- Many novel ideas on how we can benefit from wakefields appeared and proved to be working during past years
- New tools for calculation of the wakefields and beam dynamics have been developed and more to come
- Analytical tools for the plasma wakefields

