Experience with the use of a pulse width and dispersion corrected pulsed-wire technique to characterize an undulator magnet

Stephen Milton, Alex D’Audney, Sandra Biedron
Colorado State University
Background
The CSU Accelerator Laboratory Concept

• Create a “Best-in-Class” research facility/training center for accelerator beam science, engineering, and technology
 • Capitalize on the following desires/trends
 • Small
 • Efficient
 • Cost effective
 • Train the next generation of accelerator scientists, engineers, and technologists
 • Perform world-class research in beam physics
 • An operational accelerator research and training facility will attract world-class employees, collaborators, and users to CSU.
The Advanced Beam Laboratory
CSU Accelerator Laboratory

Donated by the Univ. of Twente

Donated by the Boeing Corp.
ABL Basic Layout and Initial Capabilities

Laser Lab 1

100-150 Terawatt Ti:Sapphire laser system.
- Wavelength: 0.8 micrometers
- Energy before compression: 13 Joules
- Repetition rate: up to 5 Hz
- Plans to scale to 0.5 Petawatt

Laser Lab 2

1 J, 5 picosecond, 100 Hz repetition rate diode-pumped laser (100 W average power)
- Wavelength: 1.03 micrometers
- Highest repetition rate diode-pumped chirped-pulse-amplification laser in the world
- Can be scaled in repetition rate and pulse energy, future parameters depend on funding

Accelerator Lab

6 MeV Photocathode Driven Electron Linac
- L- Band (1.3 GHz)
- Two Klystrons Available (One needed for PC Gun)
- 15 us pulse durations at 10 Hz
- Up to 81.25 MHz pulse rates available
Major System Parameters

<table>
<thead>
<tr>
<th>Component</th>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linac</td>
<td>Frequency</td>
<td>1.3 GHz</td>
</tr>
<tr>
<td></td>
<td>Repetition Rate</td>
<td>10 Hz</td>
</tr>
<tr>
<td></td>
<td>Micropulse Rep. Rate</td>
<td>81.25 MHz (max.)</td>
</tr>
<tr>
<td>Klystron</td>
<td>Type</td>
<td>TH 2022C (Thales)</td>
</tr>
<tr>
<td></td>
<td>Power</td>
<td>20 MW</td>
</tr>
<tr>
<td>Modulator</td>
<td>Type</td>
<td>PFN</td>
</tr>
<tr>
<td></td>
<td>Pulse Duration</td>
<td>15 µsec</td>
</tr>
<tr>
<td>Undulator</td>
<td>Type</td>
<td>Hybrid: NdFeB</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>1 (at 8 mm gap)</td>
</tr>
<tr>
<td></td>
<td>Period</td>
<td>25 mm</td>
</tr>
<tr>
<td></td>
<td>Periods</td>
<td>50</td>
</tr>
</tbody>
</table>
Past Performance of Linac System

- As Achieved at the University of Twente

<table>
<thead>
<tr>
<th></th>
<th>CEA</th>
<th>Boeing</th>
<th>AFEL</th>
<th>CERN</th>
<th>TEUFEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (MeV)</td>
<td>1.4</td>
<td>5</td>
<td>13</td>
<td>4.1</td>
<td>6</td>
</tr>
<tr>
<td>Energy spread (%)</td>
<td>1.9</td>
<td>0.8</td>
<td>0.3</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Emittance (π mm mrad)</td>
<td>25</td>
<td>9</td>
<td>2.1</td>
<td>52</td>
<td>1.22</td>
</tr>
<tr>
<td>Peak current (A)</td>
<td>19</td>
<td>91</td>
<td>95</td>
<td>760</td>
<td>40</td>
</tr>
<tr>
<td>Brightness (A/π² mm² mrad²)</td>
<td>0.06</td>
<td>2.2</td>
<td>43</td>
<td>0.6</td>
<td>53.7</td>
</tr>
</tbody>
</table>

A High Brightness Electron Beam for Free Electron Lasers
Van Oerle, Bartholomeus Mathias

Ph.D. Thesis Univ. of Twente
1st Experiment: THz Free-Electron Laser

- Tunable between 200-800 microns
- About 1 MW peak power from 900 MW available peak beam power (6 MeV, 150 A peak current)
- Average: a few mW (81.25 MHz rep rate, 15 microsecond macropulse, 25-ps micropulse)

Courtesy Univ. of Twente
Cartoon of Original Set up

\[\lambda_s = \frac{\lambda_w}{2\gamma^2} \left(1 + K^2 \right) \]

RF-linac

\(E = 3.1 - 6.5 \text{ MeV} \)
\(\delta E < 0.4 \% \)
\(I < 400 \text{ A} \)
\(\varepsilon < 10 \pi \text{ mm mrad} \)

wiggler

\(\lambda = 25 \text{ mm} \)
\(B = 0.7 \text{ T} \)
\(N = 50 \)

'waveguide' structure
hole coupling

\(L = 1835 - 1842 \text{ mm} \)

spectrometer

FEI-light

electrons

OTR-screen

gated camera

Courtesy Univ. of Twente
The Problem
The Problem, or at least one of them.
The Problem, or at least one of them.
Undulator Characterization: Most Common

- Traditional Hall probe
Undulator Characterization: Most Common

❖ Traditional Hall probe: Works best with clear access
CSU Undulator Specs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>1 (0.61 T)</td>
</tr>
<tr>
<td>Period</td>
<td>2.5 cm</td>
</tr>
<tr>
<td>Gap</td>
<td>8 mm</td>
</tr>
<tr>
<td>Material</td>
<td>Sm$_2$CO$_5$</td>
</tr>
<tr>
<td>Periods</td>
<td>50</td>
</tr>
<tr>
<td>Length</td>
<td>1.25 m</td>
</tr>
</tbody>
</table>
CSU Undulator Specs

<table>
<thead>
<tr>
<th>Undulator Design Parameters [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half Gap</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Half thickness of pole</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Half thickness of magnet</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Height of pole</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Height of magnet</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Half width of pole</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Half width of magnet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half Gap</td>
<td>4.0</td>
</tr>
<tr>
<td>Half thickness of pole</td>
<td>(D_2) 2.0</td>
</tr>
<tr>
<td>Half thickness of magnet</td>
<td>(h_2) 4.25</td>
</tr>
<tr>
<td>Height of pole</td>
<td>(D_3) 40.0</td>
</tr>
<tr>
<td>Height of magnet</td>
<td>(h_3) 45.0</td>
</tr>
<tr>
<td>Half width of pole</td>
<td>(D_1) 15.0</td>
</tr>
<tr>
<td>Half width of magnet</td>
<td>(h_1) 21.0</td>
</tr>
</tbody>
</table>

Additional Background

❖ Students

- Good project for them
 - Measure an undulator
 - Read and understand a paper
 - Build a pulsed current source
 - Buy and assemble the equipment
 - Set up the measurement
 - Make the measurements
 - Write up reports
 - Conference papers
 - Senior design project papers
 - 1 Masters Thesis
Students Involved

❖ Alex D’Audney
 ❖ Senior design and Masters Thesis
❖ Sky Medicine Bear
 ❖ Senior design (Pulsed current source)
❖ Sean Stellenwerff (Univ. of Twente)
 ❖ System construction and software
❖ Joshua Smith
 ❖ Summer intern (Mechanical/survey)
❖ Jonathan Hoffman
 ❖ Summer intern (Mechanical/survey)
PW History

❖ Concept first developed by R. W. Warren at LANL in 1988.
❖ Has been used in a variety of specialized cases in the characterization of magnetic fields.
❖ The method’s accuracy was previously limited due to dispersive effects in the wire and the finite pulse width.
❖ Newly developed mathematical algorithms can correct for these limitations.
Basic Understanding

A dispersion and pulse width correction algorithm for the pulsed wire method

D. Arbelaez a,*, T. Wilks a, b, A. Madur a, S. Prestemon a, S. Marks a, R. Schlueter a

a Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
b University of California, Berkeley, CA 94720, USA
LBNL Results

Uncorrected

Corrected
1st and 2nd magnetic field integrals.

Simulates both the transverse velocity and oscillation trajectory of a charged particle passing along the axis of the undulator.

\[
u_{s0}(t) = \frac{Ic_0\delta t}{2T} \int_0^{c_0 t} B(\tilde{x}) d\tilde{x} \iff v_x(z) = \frac{1}{\gamma m_s} \int_0^z qB_y(\tilde{z}) d\tilde{z}
\]

\[
u_{s0}(t) = \frac{I}{2T} \int_0^{c_0 t} \int_0^{\tilde{x}} B(\tilde{x}) d\tilde{x} d\tilde{x} \iff x(z) = \frac{1}{\gamma m_s v_z} \int_0^z qB_y(\tilde{z}) d\tilde{z} d\tilde{z}
\]
Dispersion Correction

❖ From the Euler-Bernoulli equation for the bending of thin rods:

\[c(\kappa) = c_0 \sqrt{1 + \frac{EIw}{T} \kappa^2} \]

\[c_0 = \sqrt{T/\mu} \]

❖ Need to find \(c_0 \) and \(EIw \) experimentally.
Dispersion

A reference magnet can then be measured and the signal recorded for two different positions along the wire spaced by Δx. It can then be shown that for a given frequency the wave velocity as deduced from the two signals are related to one another through the equation

$$c = \frac{\omega \Delta x}{\phi} \quad \text{where} \quad \phi = \kappa x$$

This relationship then gives the wave speed as a function of frequency ω, and a fit to the theoretical value can then be used to reconstruct the actual waveform by removing the dispersion.
Wave Speed Determination

\[\bar{u}_s^* (\omega) \bar{u}_s \Delta z (\omega) = |G(\omega)|^2 e^{i \kappa \Delta z} \]

\[c = \frac{\omega \Delta z}{\phi} \]
\[\bar{u}_s^*(\omega) \bar{u}_{s\Delta z}(\omega) = |G(\omega)|^2 e^{i\kappa \Delta z} \]

\[c = \frac{\omega \Delta z}{\phi} \]

\[\Delta z = 30 \text{cm} \]
Dispersive Wave Speed

\[c = \frac{\omega \Delta z}{\phi} \]
Correction Algorithm Summary

1. Make a measurement of the wire displacement as a function of time, $u_s(t)$, over a sufficiently broad frequency range to capture all features of the magnetic field.

2. Numerically integrate the following function for discrete equally spaced values of ω_i.

$$H(\kappa(\omega_i)) = G(\omega_i) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} u_s(\tau) e^{j\omega_i\tau} \, d\tau$$

3. Using the dispersion relationship calculate unequally spaced values of $\kappa_i = \kappa(\omega_i)$, that are associated with $H(\kappa_i) = G(\omega_i)$.
4. Multiply $H(\kappa_i)$ by $F(\kappa_i)$, where for the short pulse case

$$F^{\text{short}}(\kappa) = \frac{H_o(\kappa)}{H(\kappa)} = \left(\frac{c(\kappa)}{c_o} \right) \left(\frac{c(\kappa) + \kappa \frac{dc}{d\kappa}}{c_o} \right) \frac{j\omega(\kappa)\delta t}{e^{j\omega(\kappa)\delta t} - 1}$$

to obtain $H_o(\kappa)$.

5. For each time t_i numerically integrate

$$u_{s0}(t_i) = c_o \int_{-\infty}^{\infty} H_o(\kappa)e^{-jc_o\kappa t_i} d\kappa$$

to determine the non-dispersive displacement solution $u_{s0}(t_i)$ for the short pulse case. A similar process is used for the long pulse case.
Setup: Wire Positioning

- 2-Axis Translation Stage with 25µm resolution.
- “V-Blocks” to hold wire steady during alignment and experiments.
Setup: Wire Tension

❖ **Weight**
 - Used 2.3N and 0.85N.

❖ **Higher tension reduces dispersive effects, increases wave speed, and decreases wire displacement.**
Isolation required
Detector region
Setup: Wire Vibration Detection

- 635nm fiber laser
- 40µm Slit
- Amplified Si photo-detector
Magnetic Center

- Curved poles for parabolic pole focusing assisted in determining the magnetic center.
 - Field strength increases the further you get from the magnetic center.
Magnetic Center

- RMS values of the field strength within the undulator at various locations within the gap.
Dispersion Corrected: Short Pulse (1st Integral)
Dispersion Corrected: Long Pulse (2nd Integral)

Wire displacement due to a long, 12ms, pulse, original (top), dispersion corrected (bottom)
1st Integral of the Undulator and Ref. Magnet
2nd Integral of the Undulator

Wire displacement, original (top), dispersion corrected (bottom)

Dispersive signal (V)

Corrected signal (V)

Distance from Detector (ms)
System Difficulties

❖ Large amount of noise was prominent.
 ▪ Air
 ▪ Poor table isolation from ground
 ▪ Electrical

❖ Limitations
 ▪ Oscilloscope resolution
Improvements

- Better pulser
 - Originally used a home made current pulse
 - Noisy
 - Bought an AvTech Pulser
 - Very nice but expensive (~$11k)
 - Computer interface to NI available
 - Works well
- Better digitizer
 - Originally used an available scope
 - Limited dynamic range
 - Limited memory
 - Bought a 16-bit NI digitizer
 - Very nice

- Better environmental isolation
 - The area we were in was VERY noisy and “windy”
- Better reference magnet
 - We were limited to what we had and so ours had a non-zero 2nd integral
 - Would like it as short as possible
 - Higher frequency content
Additional steps

- Technology transferred to industry
 - KYMA S.r.L.
- Special thanks to Giuseppi Fiorito and Raffaella Geometranta
- Find another student to tune the device
Thank you