Superconducting Undulators - Magnetic Performance and Universality

Yury Ivanyushenkov
on behalf of the SCU Team
Scope

- Magnetic performance:
 - Specs achieved with 1.5-m long NbTi magnet

- SCU technology versatility:
 - Planar structure
 - Helical structure
 - Universal helical structure
 - Universal planar structure
Development of SCUs at APS

- **SCU0:**
 - 0.33-m long magnet
 - 16-mm period
 - In operation since January 2013
 - Will be replaced with SCU18-2

- **SCU1 (SCU18-1):**
 - 1.1-m magnet
 - 18-mm period length
 - In operation since May 2015

- **LCLS R&D SCU:**
 - 1.5-m magnet
 - 21-mm period length
 - Magnet met all the specs
 - Project complete in March 2016

- **SCU18-2:**
 - Assembly in progress
 - Installation in August-September 2016

- **Helical SCU:**
 - Magnet R&D in progress
 - New cryostat design in progress
 - Machine lattice study in progress

Calculated brightness of SCU1 compared to APS hybrid permanent magnet undulators.
LCLS SCU R&D magnet

- SLAC-Berkeley-Argonne collaboration
- Argonne’s responsibility:
 - Cryostat
 - NbTi magnet
- Berkeley’s responsibility:
 - Nb$_3$Sn magnet

- NbTi Magnet:
 - Length: 1.5 m
 - Period length: 21 mm
 - Magnetic gap: 8.0 mm
 - Conductor: NbTi wire

- Specs:
 - On axis peak field: 1.67 T
 - Phase error: \leq 5 deg rms
NbTi Magnet Winding

- SCU magnet consists of 2 jaws (cores) separated by magnetic gap
- Each core is a series of vertical racetrack coils wound into the core grooves
- Conductor: commercial NbTi 0.7-mm round wire
- Winding scheme: continuous winding with 180° turn after each 53-turn coil pack
NbTi Magnet Impregnation

- Each magnet core is epoxy impregnated
- Technique of vacuum impregnation in a mold is employed:
 - Place wound magnet core into the mold (Fig. 1)
 - Create rough vacuum in the mold
 - Prepare and pre-heat epoxy resin
 - Pre-heat the mold
 - Fill the mold with epoxy resin (Fig. 2)
 - Cure resin at about 120 C (Fig. 3)
 - Cool down the mold with the core
 - Extract the core from the mold (Fig. 4)
SCU Magnetic Measurement System

- Warm sensor concept:
 - Metallic guide tube is stretched inside the beam chamber cold bore
 - Guide tube is heated by the current passing through it
 - Guide tube bore is open to atmosphere
 - Sensor (Hall probe or wire coil) operates at the room temperature

- Hall probe:
 - 3-axis commercial Hall sensor measures B_y, B_x, B_z components
 - Attached to fiber tube and driven by precise 3.5-m linear stage
 - B_z field is used to measure vertical position of the sensor

- Stretched wire coils:
 - Rectangular, delta and ‘figure-8’ coils stretched between two linear and rotation stages
 - Measure static and dynamic field integrals and multipole components
Magnetic simulation was performed in Opera 3D (S. Kim), Radia 3D (Y. Ivanyushenkov) and FEMM 2D (M. Kasa).

A useful field parametrization was worked out by Suk Kim:
- Predicted field is 1.72 T at 80% of short sample I_c

Simulation in Radia

Steel core-steel poles configuration was chosen
- FEMM predicts 1.67 T at 600 A
- Radia predicts 1.67 T at 620 A
Achieving Undulator Field

Measured field profile

Measured excitation curve

Achieved field

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Design</th>
<th>Measured</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal on-axis, peak field (at 80% short-sample limit)</td>
<td>$</td>
<td>B_0</td>
<td>$</td>
<td>1.67</td>
</tr>
<tr>
<td>Nominal peak undulator parameter (at 80% short-sample limit)</td>
<td>K_0</td>
<td>3.26</td>
<td>3.260</td>
<td>-</td>
</tr>
<tr>
<td>Nominal excitation current (at 80% short-sample limit)</td>
<td>I_0</td>
<td>~600</td>
<td>588</td>
<td>A</td>
</tr>
</tbody>
</table>

Winding Errors Analysis

- Phase errors due to winding errors
- Results of simulation [1];
 - Vertical winding pack displacement has a local effect on the field while the horizontal displacement generates a long-range field error
 - Phase error due to horizontal winding pack displacement is larger than the one due to vertical displacement
 - Effect of random winding pack displacements on phase error scales as $\sqrt{\text{Length}}$

- Expected phase errors:
 - 0.33-m long SCU0 magnet: measured 1-2 deg rms (at 200-500 A)
 - 1.5-m long LCLS-II prototype magnet: estimated 4-5 deg rms when cores are manufactured with the precision better than 50 µm.

Achieved Precision

- Cores machined to high precision
- Resin impregnation process causes cores to bow
- Gap correction is therefore required

Core flatness after machining

<table>
<thead>
<tr>
<th></th>
<th>Core 1</th>
<th>Core 2</th>
<th>Core 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevation AVERAGE (mm)</td>
<td>-0.010</td>
<td>-0.015</td>
<td>-0.001</td>
</tr>
<tr>
<td>Elevation RMS (mm)</td>
<td>0.009</td>
<td>0.008</td>
<td>0.008</td>
</tr>
<tr>
<td>Elevation MAX (mm)</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
</tr>
<tr>
<td>Elevation MIN (mm)</td>
<td>-0.025</td>
<td>-0.025</td>
<td>-0.010</td>
</tr>
<tr>
<td>MAX – MIN (mm)</td>
<td>0.033</td>
<td>0.033</td>
<td>0.018</td>
</tr>
</tbody>
</table>

Core groove dimensions after machining

<table>
<thead>
<tr>
<th></th>
<th>Core 1</th>
<th>Core 2</th>
<th>Core 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half period AVERAGE (mm)</td>
<td>10.500</td>
<td>10.500</td>
<td>10.500</td>
</tr>
<tr>
<td>Half period RMS (mm)</td>
<td>0.007</td>
<td>0.008</td>
<td>0.006</td>
</tr>
<tr>
<td>Half period MIN (mm)</td>
<td>10.483</td>
<td>10.483</td>
<td>10.483</td>
</tr>
<tr>
<td>Half period MAX (mm)</td>
<td>10.516</td>
<td>10.513</td>
<td>10.513</td>
</tr>
<tr>
<td>MAX-MIN (mm)</td>
<td>0.033</td>
<td>0.030</td>
<td>0.030</td>
</tr>
<tr>
<td>Groove width AVERAGE (mm)</td>
<td>6.118</td>
<td>6.118</td>
<td>6.117</td>
</tr>
<tr>
<td>Groove width RMS (mm)</td>
<td>0.012</td>
<td>0.012</td>
<td>0.011</td>
</tr>
<tr>
<td>Groove width MIN (mm)</td>
<td>6.086</td>
<td>6.086</td>
<td>6.086</td>
</tr>
<tr>
<td>Groove width MAX (mm)</td>
<td>6.137</td>
<td>6.137</td>
<td>6.152</td>
</tr>
<tr>
<td>MAX-MIN (mm)</td>
<td>0.051</td>
<td>0.051</td>
<td>0.066</td>
</tr>
<tr>
<td>Groove depth AVERAGE (mm)</td>
<td>4.900</td>
<td>4.900</td>
<td>4.989</td>
</tr>
<tr>
<td>Groove depth RMS (mm)</td>
<td>0.018</td>
<td>0.018</td>
<td>0.008</td>
</tr>
<tr>
<td>Groove depth MIN (mm)</td>
<td>4.735</td>
<td>4.735</td>
<td>4.887</td>
</tr>
<tr>
<td>Groove depth MAX (mm)</td>
<td>4.920</td>
<td>4.920</td>
<td>4.920</td>
</tr>
<tr>
<td>MAX-MIN (mm)</td>
<td>0.185</td>
<td>0.185</td>
<td>0.033</td>
</tr>
</tbody>
</table>
Magnetic Gap Correction

- Mechanical correction of the gap:
 - A system of clamps to compress the cores
 - A clamp in the middle to adjust vertical position of the gap
 - Gap is defined by the precise spacers

- Clamps were added in situ sequentially - partial disassembly of the cryostat and 3 cool downs

- For future implementation - complete clamping system requires a clamp in each spacer position
The most challenging tolerance is achieved without magnetic ‘shimming’!
Phase Errors can be Further Improved

Measured gap and corresponding phase errors.

Corrected the largest gap error in software by scaling the field in the region between 30 cm and 60 cm.
Expected Phase Errors in SCU18-2

Phase errors determined by applying measured gap dimensions to a simulated undulator field of 1T.
Field Integral Correction

- 1st field integral is corrected with Helmholtz-like coil
- 2nd field integral is corrected with end corrector coils and with a pair of external dipole coils.
1st Integral Correction

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Design</th>
<th>Measured</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. 1st field integral (x and y)</td>
<td>$I_{1x,y}$</td>
<td>±40</td>
<td>$I_{1x} = 10 \pm 3$</td>
<td>$I_{1y} = 10 \pm 3$</td>
</tr>
</tbody>
</table>

Horizontal and Vertical 1st Field Integrals - No Correction

Specification is ±40 µT-m

Horizontal and Vertical 1st Field Integrals - Corrected

2nd Integral Correction

Specification

- **Parameter Symbol**: $I_{2x,y}$
- **Design**: ±150 µT·m²
- **Measured**
 - $I_{2x} = 75 ±10 µT·m²$
 - $I_{2y} = 10 ±10 µT·m²$

Tables

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Design</th>
<th>Measured</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. 2nd field integral (x and y)</td>
<td>$I_{2x,y}$</td>
<td>±150</td>
<td>$I_{2x} = 75 ±10$</td>
<td>µT·m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$I_{2y} = 10 ±10$</td>
<td></td>
</tr>
</tbody>
</table>

NbTi Magnet Performance

Table 1: Main design parameters of the NbTi undulator.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Design</th>
<th>Measured</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undulator period (at 300 K)</td>
<td>l_u</td>
<td>21</td>
<td>21</td>
<td>mm</td>
</tr>
<tr>
<td>Undulator length (approx. magnetic)</td>
<td>L_u</td>
<td>1.5</td>
<td>1.5</td>
<td>m</td>
</tr>
<tr>
<td>Full-height magnetic gap</td>
<td>g_m</td>
<td>8.0</td>
<td>8.0</td>
<td>mm</td>
</tr>
<tr>
<td>Full-height vacuum chamber stay-clear gap</td>
<td>g_v</td>
<td>5.7</td>
<td>5.7</td>
<td>mm</td>
</tr>
<tr>
<td>Nominal on-axis, peak field (at 80% short-sample limit)</td>
<td>$</td>
<td>B_0</td>
<td>$</td>
<td>1.67</td>
</tr>
<tr>
<td>Nominal peak undulator parameter (at 80% short-sample limit)</td>
<td>K_0</td>
<td>3.26</td>
<td>3.260</td>
<td>-</td>
</tr>
<tr>
<td>Nominal excitation current (at 80% short-sample limit)</td>
<td>I_0</td>
<td>~600</td>
<td>588</td>
<td>A</td>
</tr>
</tbody>
</table>

Table 2: Tolerances and quality of the NbTi undulator magnet.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Design</th>
<th>Measured</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement resolution of mean K (rms)</td>
<td>$\langle \Delta K/K \rangle_{\text{rms}}$</td>
<td></td>
<td>0.02</td>
<td>0.008 %</td>
</tr>
<tr>
<td>Reproducibility of mean K (after on/off)</td>
<td>$\langle \Delta K/K \rangle_{\text{err}}$</td>
<td>±0.03</td>
<td>0.008</td>
<td>%</td>
</tr>
<tr>
<td>Phase shake error over undulator (rms)</td>
<td>Δj_{rms}</td>
<td>5</td>
<td>3.8 ± 0.3</td>
<td>deg</td>
</tr>
<tr>
<td>Max. field roll-off over pole width</td>
<td>$</td>
<td>\Delta K/K</td>
<td>@ \Delta x = \pm 0.4$ mm</td>
<td>0.05</td>
</tr>
<tr>
<td>Max. 1st field integral (x and y)</td>
<td>$I_{1x,y}$</td>
<td>±40</td>
<td></td>
<td>µT-m</td>
</tr>
<tr>
<td></td>
<td>$I_{1x} = 10 \pm 3$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_{1y} = 10 \pm 3$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. 2nd field integral (x and y)</td>
<td>$I_{2x,y}$</td>
<td>±150</td>
<td></td>
<td>µT-m²</td>
</tr>
<tr>
<td></td>
<td>$I_{2x} = 75 \pm 10$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_{2y} = 10 \pm 10$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All tolerances and specifications are met.
Magnetic Performance - Summary

- 1.5-m long NbTi magnet was built and tested in the 2-m cryostat
- Performance of the magnet was measured with SCU magnetic measurement system
- The NbTi magnet achieved all the specs
- Superconducting undulator magnet is able to deliver high quality field without any magnetic shimming!
SCU Technology Versatility
Planar SCUs

- Planar SCU:
 - Magnetic forces are reacted by spacers
 - Two jaws with clamps and spacer form a rigid structure
 - All structure can be rotated by 90 deg

- Planar SCUs:
 Both vertical field orientation (horizontal polarization) and horizontal field orientation (vertical polarization) is possible
Helical SCUs

- Helical SCU:
 - Double helical winding
 - Helical magnetic field
 - Single harmonic on axis

- Helical SCUs are possible
APS HSCU parameters

- APS sector: 7
- Photon energy range: 6-12 keV
 - Desirable FWHM: ≤ 3%
- Period length: 31.5 mm
- Magnetic length: ≈1.2 m
- Beam stay clear: 7 mm vertical, 26 mm horizontal
- Winding bore diameter: 31 mm
- Conductor: NbTi
- Field on axis: 0.41 T
HSCU Magnet R&D

HSCU Cryostat vs. SCU0/SCU1 Cryostat

SCU0/SCU1 cryostat, designed by V. Syrovatin, BINP
HSCU cryostat, designed by J. Fuerst, APS

Universal Helical SCU

Universal SCU concept is based on old idea [1]. It requires one helical SCU structure to be inserted into the other with the opposite helicity. Such a device can generate both planar and vertical fields.

<table>
<thead>
<tr>
<th>Inner Coil Current</th>
<th>Outer Coil Current</th>
<th>Field Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ I₁</td>
<td>0</td>
<td>Helical</td>
</tr>
<tr>
<td>0</td>
<td>+ I₂</td>
<td>Helical (opposite helicity)</td>
</tr>
<tr>
<td>+ I₁</td>
<td>+ I₂</td>
<td>Vertical</td>
</tr>
<tr>
<td>- I₁</td>
<td>+ I₂</td>
<td>Horizontal</td>
</tr>
</tbody>
</table>

Universal Planar SCU

- New idea by Efim Gluskin.
- Magnetic structure consists of two pairs of planar-like jaws.
- Can generate both planar and helical fields (confirmed by simulation).
SCU Technology Versatility - Summary

Planar SCUs

Universal Planar SCUs

“Logic will get you from A to Z; imagination will get you everywhere.”
Albert Einstein

Helical SCUs

Universal Helical SCUs

Acknowledgment

S. Bettenhausen1, R. Dejus1, C. Doose1, J. Fuerst1, G. Gagliano2, Q. Hasse1, R. Hibbard2, M. Kasa1, I. Kesgin3, W. Jansma2, D. Jensen2, S. Kim1, G. Pile2, D. Skiadopoulos2, E. Trakhtenberg2, Y. Shiroyanagi1, M. White2 and E. Gluskin1

1ASD \hspace{1cm} 2AES \hspace{1cm} 3MSD