

MBA Fast Corrector Power Supply Development

November 18, 2015

Byeong. Song* Gary Sprau Ju Wang

* No longer with APS

Outline

- Power supply requirement for the APS-U
- Technical requirement and challenges
- Choice of power circuit and regulation algorithm
- Prototype design
- Initial test results

Scope of APS-U Storage Ring Power Supplies

- 2082 power supplies for the APS-U magnets
 - Two large power supplies up to 1000A for L-bend (M1/M2) dipole magnets
 - One thousand 10 ppm stability-class and 230A unipolar DC power supplies for Q-bend (M3/M4) dipole, quadrupole, and sextupole magnets
 - 760 \pm 15A DC bipolar power supplies for trim/correction and skew quad coils
 - 320 \pm 15A bipolar power supplies for fast correctors
- 400 power supply controllers
 - 200 Unipolar power supply controllers
 - 200 Bipolar power supply controllers
- Pre-installation test
 - All the power supplies and the power supply controllers will be 100% tested in a temperature-elevated environment before the installation starts

New SR requires 2082 power supplies and 400 power supply controllers. All need to be pre-tested and ready before shutdown starts.

Fast Corrector PS Specifications and Parameters

Specifications/Design Paramters	Fast Corr PS	Exiting PS*	Unit
Maximun operating current	±13	±150	А
Maximun output voltage	40	40	V
Maximun output power	0.52	6	kW
Current stability (AC RMS)	TBD	300	ppm
Initial accuracy after installation	100		ppm
Magnet-to-magnet repeatability	100	700	ppm
Reproducibility after shutdown	10	600	ppm
Small-signal -3dB bandwidth	10		kHz
Current ripple	TBD	1000	ppm
Voltage ripple	TBD		ppm
Magnet inductance	16.5	3.48/4.28	mH

* Parameters from 1992 power supply design review

Fast Communications Requirements

- 22.6 kHz update rate
- 10 µs latency

Challenges and Issues

- Fast corrector magnet is very inductive
 - 16.5 mH in the design by BNL
 - High impedance at 10 kHz

 $Z = \omega L = 2\pi f L = 2\pi \times 10000 \times 0.0165 = 1036.7 \,\Omega$

- s pole last corrector magnet
- For 130 mA (1% of full rating) peak-to-peak current at 10 kHz, required peak-to-peak voltage is

 $V = Z \times I = 1036.7 \times 0.13 = 134.7 V$

No commercial bipolar power supplies meet this requirement

Example:

Kepco 20-10 (\pm 20V, \pm 10A) linear power supply With a 10 mH load, -3dB at 3.7 kHz

R&D Goals

- Choose appropriate power supply circuit topology
- Choose appropriate hardware for the power circuit
- Design control loop
- Stay within constrains
 - Use existing 40V DC bus
- Deliver a 75 mA peak-to-peak current at 10 kHz
- Keep the design simple for reliability

Some of Basic Power Circuits

- Switching mode power supplies
 - Buck converters
 - Simple topology
 - Output voltage less than input voltage
 - Output can be unipolar or bipolar
 - All APS storage ring power converters are buck converters
 - Boost converter
 - Simple topology
 - Output voltage greater than the input voltage V_{in}
 - Unipolar output only
 - Buck-boost or Boost-buck converters,
 - Output voltage can be either higher or lower than the input
 - Output can be unipolar or bipolar
- Linear power amplifiers
 - Works like operational amplifiers
 - High bandwidth, hundreds kHz
 - High power consumption, good for AC, not good for DC

Buck Converter

Boost Converter

November 18, 2015

Proposed Circuit for Bipolar Power Supply

- An H-bridge with four semiconductor switches
- Bipolar output
- Output voltage ≤ input voltage a buck converter
- Output filter to reduce ripple voltage and ripple current

Semiconductor Switches

- Discrete MOSFET switches
 - Small size
 - Low conduction resistance
 - Low cost
- Switching (class D) amplifiers
 - Full bridge package
 - Built-in PWM generator
 - Built-in gate drive circuit
 - Built-in protection circuit
 - High conduction losses
 - High cost

SA12

Example: IRFB 4610, 100V, 73A, 11 m Ω on resistance TO-220 package Less than \$2.50 per MOSFET

Example:

APEX SA12, 200V, 15A, 400 mΩ on resistance 200 kHz built-in PWM \$400 - \$600 per unit

In comparison, existing SR corrector power supplies uses two IGBTs, each rated 600V, 300A, and cost ~ \$200

Power Supply Regulator Design

- Pulse width modulation (PWM) methods
 - A reference signal is compared with a periodic signal
 - Switches under control is turned on or off according to the comparison result
 - There are many PWM methods available
 - The simplest uses sawtooth or triangular waveforms
 - The power supply output voltage is proportional to the switch on time during the cycle, a.k.a. duty cycle or duty ratio
- Closed feedback loop for the current regulation
 - Proportional and integral (P-I) compensator
 - Lead-lag compensator to improve high frequency performance

Sawtooth PWM

Switch Q1 or Q2 is modulated to regulate the output while switch Q3 or Q4 is held on to control the polarity

- Only two switches are used for a given output polarity
- Very simple and easy to implement
- Does not work well for very small duty ratio or around zero for bipolar output
- Used in the storage ring quad, sext, and original corrector power converters

Unipolar PWM - choice for the design

- V_{DC} can be positive or negative
- Ripple frequency is twice the PWM frequency
- Zero output at D = 0.5
- Smooth transition around zero

Switching sequence: assume Q1 and Q4 on initially

Switching 1: Q1 off and Q3 on

Q3 does not need to be gated on. But, with MOSFETs, gate-on may result in lower conduction losses.

ASD Seminar

Switching 2: Q1 on and Q3 off

Switching 3: Q4 off and Q2 on

Switching 4: Q4 on and Q2 off, back to initial condition

ASD Seminar

Simulation with PLECS (piecewise linear electrical circuit simulation)

18

First Prototype

- 1. Input capacitor bank
- 2. MOSFET heat sink
- 3. Cooling fan
- 4. MOSFET gate drive circuit
- 5. Output filter
- 6. Current sensor, LEM
- 7. Triangular waveform generator
- 8. P-I and lead-lag compensators
- 9. Interlocks for over current and over temperature
 10.Reference input

16.5 mH high frequency magnet

November 18, 2015

ASD Seminar

Initial Test Results - MOSFET Gate Signals

ASD Seminar

MOSFET Drain-Source Voltage - no shoot-through condition

Step Function Response

150 mA (1%) Peak-peak Reference at 1 kHz

150 mA (1%) Peak-peak Reference at 5 kHz

150 mA (1%) Peak-peak Reference at 10 kHz

75 mA (0.5%) Peak-peak Reference at 10 kHz

Frequency Response (24.8981 mVpk, zero offset drive)

Test equipment: Dynamic signal analyzer HP35670A 24.8981 mVpk = 37.35 mApk, ~1 μrad bend

Summary

- A prototype MOSFET-based fast bipolar power supply is developed
- Achieved 10 kHz bandwidth for a 0.5% small signal
- Prototype is under redesign to
 - Reduce switching noise in the circuit
 - Clean up the mistakes
- Retune control loop parameters for real magnet, which is a laminated magnet and may have a very different characteristic at high frequency

Questions?

