HGVPU: LONG PROTOTYPE MEASUREMENTS AND TUNING

I. Vasserman, N. Strelnikov, J. Xu March 25, 2014

Outline

The stages of tuning:

- 1. New magnetic measurement system
- 3 m long device. Magnetic structure →3m, Springs→2.8 m. Strong deflection
- 3. 2.8 m long device magnetic structure: measurements and tuning
- 4. Future plans: 3.4 m device

Motivation for the development of a new type of undulator

- Deliver vertically polarized x-rays.
- Compactness; simplified fabrication and assembly.
- Compatibility of new undulator with the existing mechanical, vacuum, and control systems of the LCLS-I.

Introduction

The absolute majority of synchrotron radiation (SR) sources, including free electron lasers (FEL), utilize IDs with a vertically oriented magnetic field. New SR machines promise to operate with round e-beams and execute on-axis injection. Therefore developments of novel planar IDs with horizontal magnetic fields become a practical matter both for SR and FEL.

At least two major advantages of rotating ID geometry by 90 degrees:

- Rotation of the polarization plane of emitted radiation, which results in the transformation of monochromators and experimental set-ups to the "gravity neutral" systems;
- 2. Combined with the magnetic force compensation system, the ID gap drive mechanism could become quite compact.

3m-long prototype in MM1

Top view of the LCLS II undulator prototype schematics

Hall Probe system upgrade

Gap control window at 9.0 mm

Undulator requirements

Parameter	Values	Units
Undulator parameter tolerance Δk/k	±2.3*10 ⁻⁰⁴	
Cell phase error	±4.0	deg
First field integral of By per cell (abs)	<40	μTm
Second field integral of By per cell (abs)	<150	μTM ²
Field integral quadrupole (abs)	<0.01	т
Field integral sextupole (abs)	<2	T/m
Field integral octupole (abs)	<400	T/ m ²

3m long prototype gap vs. Z at 9 mm gap

Capacitec

Hall Probe

2.8 m device

Comparison of 3 m vs. 2.8 m. peak field at gap 9 mm

ΔB=400 G

Straightness of trajectory at Gap 9 mm

Peak field vs. Z at gap 20 mm

After alignment with mechanical shims Gap/field ratio is 4 µm/G

Location of side shims

Gap 15 mm. magnetic force > spring force

Parabolic taper. Device is still sensitive to errors in matching of magnetic force by springs.

Gap 13 mm. magnetic force > spring force

Gap in the middle larger than at the ends. Parabolic taper.

Gap 11 mm. Local distortions

Tuning with springs was done at this gap. No taper. Local distortions only. RMS phase errors 4.46 deg.

Gap 7.2 mm. Local distortions

Discussion

- Bow was corrected by mechanical shimming at gap 20 mm and adjusted at 11 mm by tuning of the springs.
- At gaps less than 11 mm no bow exists, at gaps more than 11 mm up to 15 mm there is a bow.
- Accordingly, the best rms phase error was obtained at 11 mm. At smaller gaps rms increases due to local errors that depend on undulator parameter K (see below).
- Main part of the phase errors according to equation below (R. Walker) is decreasing with gap, so sensitivity to the errors is maximum for a small gap: $\psi_i = -\pi \frac{K^2}{1+K^2/2} * \frac{\pi \Delta g_i}{\lambda}$

here Δg_i -gap error

Horizontal Trajectory at 7.2 mm gap

Effective Field Time Dependence

HGVPU magnetic shims

2 mm thick

> Long trajectory shim

Side shims in place

6 mm thick shim **Bolts** 2 mm thick

RMS Phase Errors

_Roy R Craig Jr., "Mechanics of Materials", John Willey &Sons, 2nd Edition,2000 P_i-spring cage forces, w-magnetic distributed force EI-rigidity

Top: 0 bow, 0.25°, bottom 30 µm bow, 6.2°

Beam deflection 1D case

First and second Horizontal Field Integrals vs. Gap

Vertical Field Integrals tuning

Algorithms, the interface

Shimming.vi									
Ele Edit View Project Operate Tools Window Help									
LCLS II prototype shim signatures					REQ 1ST (GCM)	REQ 2ND (kGCM 2)	Coil Dist. (M)	ID LTH (M)	1ST OK
					40.0	10.0	0.50	2.68	2ND OK
max	2	2	4	2				04246420	
Gap	Trj 8x20x0.1 P3	Trj 2x40x0.1 P3	Flat 2x0.1 P3	Side 4mm P3	1ST INIT	2ND INIT	1ST ID	2ND ID	2ND Coil
20	9.5	-15	8	184	3.0	-14.0	22.0	-5.0	-3.9
15	19	-19.5	16	211	-15.0	-20.0	23.0	2.2	3.3
13	24.5	-24.5	15	222	-49.0	-28.0	0.0	3.7	3.7
11	34	-27	18	238	-90.0	-43.0	-22.0	5.5	4.4
9	45	-30.5	22	255	-115.0	-65.0	-25.0	0.2	-1.0
8	61.5	-25	22	264	-130.0	-84.0	-7.0	-4.6	-5.0
7.3	81	-16.5	21	267	-140.0	-95.0	22.0	-1.2	-0.1
Shim type	Trj 8x20x0.1 P3	Trj 2x40x0.1 P3	Flat 2x0.1 P3	Side 4mm P3	WRITE			READ	
NEG NO	2	0	0	0					
POS No	0	0	0	0	OLIIT			T	

Tuning procedure

• Figure at slide 28 shows the interface of the algorithms. Clicking the READ button reads the magnetic shim signature (change of the 1st field integral) file as shown in slide 30. Users have to enter the 1st integral requirement in G-cm, the 2nd integral requirement in kG-cm², as well as the measured 1st and 2nd initial integral values for each gap of interest.

• Click the START button and the system calculates all the combinations starting with the 2nd integrals. If the 2nd integral requirement can be met, the 2nd indicator turns from red NA to green OK. It then moves on to the 1st integral calculation. If the 1st integral requirement can be met, the 1st indicator turns from red NA to green OK.

READ the shim types and signatures

/*												
LCLS I	I prototype sh	im signatures										
*/												
max	2	2	4	2	2	2	4	4	2	2	4	4
Gap	Trj 8x20x0.1 P3	Tri 2x40x0.1 in P3	Flat 2x0.1 P3	Side 4mm P3	Trj 8x20x0.1 P4	Trj 4x40x0.1 P4	Flat 2x0.1 P4	Side 4mm P4	Trj 8x20x0.1 P5	Trj 4x40x0.1 P5	Flat 2x0.1 P5	Side 4mm P5
20	9.5	-15	8	184	-10.5	24	-13	-195	7.5	-30	8	196
15	19	-19.5	16	211	-29	14	-17	-223	21	-26	13	227
13	24.5	-24.5	15	222	-42	5	-23	-232	30	-24.5	13	234
11	34	-27	18	238	-55	1.5	-22	-241	48	-15	19	236
9	45	-30.5	22	255	-72	-4	-23	-252	66	-8	20	239
8	61.5	-25	22	264	-79.5	-8	-23	-257	74.5	-4	20	241
7.3	81	-16.5	21	267	-86	-8	-24	-258	81	-2	20	245
			Ī				T					

Effective Field and Phase error Gap Dependence

Gap (mm)	RMS phase error	B effective (T)
7.2	5.63	10051
8.0	5.78	9145
9.0	6.34	7962
11.0	4.46	6156
13.0	6.03	4727
15.0	5.35	3666
20.0	2.99	1983

Discussion

- 15 kG-cm² second field integral and 40 G-cm of J1_x requirements were satisfied during this tuning.
- Initial tuning was done with step by step shimming. After implementation of the algorithm for automation, all procedures require ~1-2 day.
- Main challenge is phase errors. It is possible to satisfy the requirements for only one particular gap for this device due to gap dependent bow.

Conclusion

- Magnetic measurements and tuning revealed issues that have to be addressed during design of next full length prototype:
 - 1. Deflection of strong backs. Proper location of actuators, putting actuators and slides on the same axis will help.
 - 2. Deflection of magnetic structure base.
 - 3. More reliable design of spring cages setup providing easier tuning during installation and providing the same conditions during calibration and operation to avoid mismatch of the spring and magnetic force.
 - 4. Most critical issue is effective field long time stability.
- Even in recent conditions it is possible to tune device very close to specifications.

Conclusion (cont).

 3.4-m-prototype design, which takes into account all the lessons learned, is ready, and fabrication is on the way. This prototype has to be measured and tuned by August, 2015.