Conceptual Design
MBA Vacuum System Overview

Herman Cease
APS Upgrade Accelerator Vacuum Group
October 15, 2014
Outline

- APS-U Accelerator Vacuum System
- Vacuum chambers in the 40 arc sections
- Ray tracing
- Vacuum pressure simulations
- Installation plans
- R&D plans for a vacuum chamber sector mockup
The Upgrade is evaluating a completely new DLSR magnet lattice and vacuum system
MBA Vacuum Design Scheme, typical sector

- **28 Beam chambers:**
- **Vacuum pumps:** 7 Discrete active pumps, NEG strips in L-Bend ante-chambers, NEG coating in FODO section between gate valves.
- **Quad doublet:** Chamber is a simple spool. Magnets incorporate fast correctors.
- **L-bend:** Magnet is C-shaped, we can use APS-style Al extrusions with antechambers.
- **Multiplet:** Space is tight except for two ~250 mm gaps between adjacent magnet per section. There is also a light synchrotron heat load (~100 W/m). Simple spools with water cooling are used except where x-ray extraction requires a wider “key-hole” geometry.
- **FODO:** Distributed absorber, and cooling. Thermal load (~1–1.5 W/mm). Required thermal performance suggests high-strength Cu chambers.
- **ID Chambers:** Aluminum extrusions, ante chambers, NEG strips, design by ID group. May be a long-term interest in small diameter chambers -6 mm round.
MBA Vacuum Design Scheme, typical sector

- **Vacuum System:**
 - Arc Chambers and photon extraction chambers,
 - Pumping and gaging,
 - Crotch Absorbers,
 - BPMs: 12 per arc section,
 - Interfaces,
 - Vacuum design of ID straight chambers,
 - Design of the chamber is done in the ID group.
 - Transition chambers for beam injection, extraction, RF cavities.
Quad Doublet Vacuum Chambers

SST 904L to minimize shielding of fast-corrector fields. Internal Cu plate will minimize beam impedance.

2 3/4" SST CF/QCF flanges

No cooling tubes allowed to avoid perturbing fast corrector fields. No heating from direct bending magnet radiation is expected. If RF heating is an issue, two symmetric cooling channels may be an option.

H. Cease, MBA Vacuum System Overview Oct. 15, 2014
L-Bend Vacuum Chambers

Extruded 6063-T5 Al body

NEG strip mounting scheme similar to existing APS design

2 ¾” CF/QCF
TBD: Flanges Al or bi-metal Al/SST

Flexure-based support scheme at ends based on existing APS design

Length approx. 2.2 m

S01A: VC3,11
S01B: VC3,11
CF/QCF flanges larger than 2 ¾” will be necessary.
Welded Al or bi-metal Al/SST

Water cooling channel on inboard side either welded on or EDM’ed along with body. These chambers receive no direct heating from synchrotron radiation.

Height on x-ray beam side must be increased by 3 mm. A “bowtie”-like shape will result.
Multiplet Vacuum Chambers

2 ¾” CF/QCF flanges
Welded Al or bi-metal Al/SST

Al 6063-T5 tube
(possibly std. commercial item)

Synchrotron radiation hits outboard side but power is low (approx. 100 W/m)

Al tube for water cooling welded to inboard side.

H. Cease, MBA Vacuum System Overview Oct. 15, 2014
FODO Chambers

6 FODO chambers per sector, chambers between 500-1600mm length

Water cooled Copper chambers:
- Radiation thermal load is 1-1.5 W/mm length or ~11 W/mm^2
- NEG Coated between Gate Valves

Flange Absorber shields downstream elements

Downstream Chambers include photon extraction slot for BM line
FODO Chambers

- Optimizing for thermal cooling and minimizing impedance.
- Cooling system of VC18 is envisioned to have of two (might be reduced to one) longitudinal cooling channels and a separate cooling circuit for in-line absorber.
Integrated BPM / Bellows Assemblies

3 tooling balls plus “flat” for precise alignment

RF “button” BPM similar to those commercially available from Insulator Seal and others.

2 ¾” QCF flanges

Edge-welded bellows to decouple thermally-induced chamber motion from BPMs

RF liner inside is TBD

Threaded fasteneners for alignment.

Rigid, non-magnetic base. Carbon fiber or SST 316L

Estimated insertion length is 125 mm
Synchrotron Radiation Ray Trace: Absorbers

MAX-IV crotch absorber for the ID beam extraction crotch: S01A:CA1

APS end absorber for the 3PW extraction crotch: S01B:CA1 and end absorber: S01A:EA2

APS boot absorber for the end absorbers on L-bend chambers: S01A:EA1, S01B:EA1, S01B:EA2

APS transition absorber for use upstream of shielded gate valves and pump-out liners: S01A:TA1,2 S01B:TA1,2

MAX-IV inspired bellows absorber
Ion Pump, and Gauge Insertion

- Ta/Ti (noble gas pumping) ion pump
- Transition absorber to protect liner from bending magnet radiation.
- RF liner inside is TBD
- Right angle valve (back) so that entire tree can be removed without venting chambers
- Cold cathode and thermocouple gauges
- ID crotch absorber will be mounted in outboard port of S01A:VC6
- RGA will be mounted in outboard port of one of S01A:VC15 OR S01B:VC6
- Vacuum cross modified for minimum insertion length.
- Estimated insertion length is 250 mm
- 2X right angle valves for rough pumping and purge

S01A:VC6,15
S01B:VC6
Ray traces initial performed with CAD program and analytically.
Total thermal load due to radiation per sector is 11.2 kW.
Bending magnet radiation power is concentrated in the center (FODO) section and at the ends (close to the ID beam), distributed power is 4kW.
Glidcop lip absorbers needed in FODO section to shadow downstream flanges and bellows.
Maximum power density on the FODO section chamber wall is ~11 W / mm².
Maximum power density on an absorber is ~50 W/mm².
BM crotch absorber is 2.2kW, discrete absorber located in L-bend chamber – antechamber.
Overview & Status: Vacuum Analysis

- Initially 1-D analytical calculations.
 - Has many limitations, but is a good first pass to compare initial designs. Using VacCalc.

- Working with SynRad and MolFlow+.
 - Utilizes a parameterized 3-D CAD model for the sector geometry.
 - Developing detailed 3-D simulations for the entire sector.
 - Can be used as a ray tracing tool and for steering conditions.
 - Includes power at absorbers and chamber walls.
 - Pressure analysis at absorbers and the entire sector.
Design comparison, 4 vs 7 ion pumps:

4 X100 L/s pumps

7x 45 L/s pumps with cartridge pumps at cross stations

In a conductance limited system, a larger number of small pumps are more efficient than a few large pumps.
Design comparison, CH4 pressure:
CH4 pressure after 20 days at full current

4 X100 L/s pumps

25% of total

7x 45 L/s pumps with cartridge pumps at cross stations

20% of total
SynRad: Ray tracing and synchrotron radiation

- SynRad Development.
 - Utilizes a parameterized 3-D CAD model for the sector geometry.
 - Determines beam thermal profile both vertical and longitudinal on chamber walls and absorbers.
 - Simulates Photon Stimulated Desorption.
 - Can be used as a ray tracing tool and for steering conditions.

![Diagram of SynRad](image)

Figure 4: Distribution of bending magnet radiation for a typical storage ring sector.

<table>
<thead>
<tr>
<th>Sections</th>
<th>Ray trace power (W)</th>
<th>SynRad Power (W)</th>
<th>Difference (W)</th>
<th>% diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID front end</td>
<td>141</td>
<td>140</td>
<td>-1</td>
<td>-1%</td>
</tr>
<tr>
<td>AM1</td>
<td>121</td>
<td>127</td>
<td>6</td>
<td>5%</td>
</tr>
<tr>
<td>A Crotch</td>
<td>1073</td>
<td>1075</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>Multiplet 1</td>
<td>112</td>
<td>115</td>
<td>3</td>
<td>3%</td>
</tr>
<tr>
<td>AM2</td>
<td>244</td>
<td>250</td>
<td>6</td>
<td>2%</td>
</tr>
<tr>
<td>AQ7</td>
<td>174</td>
<td>183</td>
<td>9</td>
<td>5%</td>
</tr>
<tr>
<td>FODO wall</td>
<td>4295</td>
<td>4329</td>
<td>34</td>
<td>1%</td>
</tr>
<tr>
<td>BM2</td>
<td>368</td>
<td>281</td>
<td>-87</td>
<td>-24%</td>
</tr>
<tr>
<td>BM front end</td>
<td>612</td>
<td>591</td>
<td>-21</td>
<td>-3%</td>
</tr>
<tr>
<td>B Crotch</td>
<td>2327</td>
<td>2387</td>
<td>60</td>
<td>3%</td>
</tr>
<tr>
<td>Multiplet 2</td>
<td>382</td>
<td>372</td>
<td>-10</td>
<td>-3%</td>
</tr>
<tr>
<td>BM1</td>
<td>195</td>
<td>205</td>
<td>10</td>
<td>5%</td>
</tr>
<tr>
<td>Walls + straight</td>
<td>1143</td>
<td>1124</td>
<td>-19</td>
<td>-2%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>11187</td>
<td>11179</td>
<td>-8</td>
<td>0%</td>
</tr>
</tbody>
</table>
Vacuum pressure profile with 3-D simulation tool MolFlow

Sector 1 MBA Pressure Profile, T=20 days
SynRad/MolFlow

Pressure (nTorr)

Sector Distance (cm)
Removal, Installation, function tests with beam

- 1 year total duration
- Vacuum chambers pre-installed on girders.
- Integrated and pre-aligned with magnets.
- Chamber assemblies same length as girder.
- 9 integrated support, magnet, vacuum assemblies installed in the tunnel per each arc section.
- ~3 months allocated for closing the vacuum system.
Overview & Status Risks and R&D plan

- **Vacuum System Risk List.**
 - Vacuum pressure requirement exceeded
 - Consequence is operating at less beam current
 - Installation duration exceeded
 - Delayed integrated testing.
 - Impedance budget exceeded
 - Consequence is operating at less bunch current
 - Temperature of component is higher than expected

- **Vacuum System R&D Plan.**
 - Sector mockup
 - Fabrication, cooling methods, alignment, stability, installation procedures,
 - Vacuum pressure on the sector mockup
 - Pressure can be measured across the sector with simulated loads at absorbers.
 - Impedance measurements
 - Stretched wire testing of components
 - NEG coating measurements
Summary

- Vacuum system design drivers:
 - Magnet bore diameters are small
 - Limited Space for ante-chambers and NEG strips.
 - Ex-situ activation of NEG coated chambers.
 - Installation time requires minimizing bake out and activation durations.
 - The number of NEG coated chambers requiring ex-situ activation are minimized.
 - NEG coated chambers are isolated with gate valves, allowing installation under vacuum.

- Vacuum System Design developments:
 - Parameterized CAD model
 - Synchrotron radiation power loads on chamber walls and absorbers modelled analytically and with 3-D simulations.
 - Vacuum pressure across the sector modelled with 1-D and 3-D simulations tools.
 - Chamber fabrication techniques
 - High heat load in FODO section, requires specialized flange absorbers
 - Vacuum flange and vacuum flange to chamber material bonding techniques are being evaluated.

- Vacuum system conceptual design of arc chambers is developed.
Backup Slides
Integrated Assemblies

Vacuum components integrated inside the assembly. Chamber assembly with utility pigtails mounted in lower half. Top half closes the unit.

BM: Straight Multiplet

Pump out chamber