

Wide Bandgap (WBG) Semiconductor Power Devices for Switching and RF Power Supplies

Krishna Shenai, PhD Argonne National Laboratory

ASD Seminar Presented at: Advanced Photon Source September 19, 2014

What is the Role of Power Electronics in the Emerging 21st Century Energy Economy?

Power Electronics Applications

Power Electronics Industry Consortium (PEIC)

Why Wide Bandgap (WBG) Semiconductors?

Si is the industry workhorse

B

If there is no cost and reliability penalty

Smaller Converter Profile

Requires higher converter <u>switching frequency</u> and <u>system integration</u>

Reduced Thermal Budget

<u>High-temperature semicond</u>uctor and improved <u>thermal</u> <u>management</u>

Wide bandgap (WBG) semiconductors, such as SiC and GaN devices, offer superior <u>electrical</u> and <u>thermal</u> performances compared to silicon

K. Shenai *et al,* "Optimum Semiconductors for High-Power Electronics," *IEEE Trans. Electron Devices*, vol. 36, no. 9, pp. 1811-1823, September 1989.

eGaN™ Battery Charger

 V_{IN} =48 V V_{OUT} =12 V

Why Wireless Energy?

- Mobile device charging
 - Convenience
 - Extended battery life
- Medical Implants
 - Quality of life improvement
 - Life extender
- Hazardous environment systems
 - Explosive atmosphere
 - Corrosive locations
 - High Voltage

<section-header>

Fixed Supply voltage, DC Load Resistance varied

Need to further:

- improve efficiency
- increase transmission range
- reduce cost

DoE's EV Everywhere

Electric Drive System 2022 Targets

		Current Status	Target
System Cost	\$/kW	30	8
Specific Power	kW/kg	1.1	1.4
Power Density	kW/L	2.6	4.0
Peak Efficiency	%	90	94

Vehicle Charging 2022 Targets

Production Cost	416.0
\$/kW	7.05

DC Link capacitor

6%

PCB

24%

http://energy.gov/sites/prod/files/2014/04/f15/2013_apeem_report.pdf

Sensor

4%

EMI Filter

3%

Hybrid Microgrid

Firming Wind Power With Gas Generator

net effy =
$$\frac{\sum_{i} Power_{i} \cdot \Delta t_{i}}{\sum_{i} \frac{Power_{i} \cdot \Delta t_{i}}{\eta_{i}}}$$

Breakthrough solution to deal with variable loads

- Need WBG power electronics to achieve these efficiency gains.
- Even better gains are possible for DC and variable speed drives

14 kW Air-Cooled SiC Split-Phase Inverter

- 400 V DC input for 6 8 kW and 600 V DC input for 10 14 kW
- Balanced loading conditions
- Switching frequency: 20 kHz
- Room ambient: 20 °C
- Gate drives: SiC MOSFET $v_{GS} = +20/-6$ V, Si IGBT $v_{GE} = +17/-9$ V
- Temperature data recorded upon reaching thermal steady state of switches

Measured Inverter Efficiency

Design Options to Reduce System-Level \$/kW

	OPTION 1 Higher Power 14 kW instead of 10 kW	OPTION 2 Smaller Cooling @ 10 kW	OPTION 3 Higher Frequency @ 8 kW
	10 kW @ 90% efficiency	240 CFM	20 kHz switching
Si Inverter			
	14 kW @ 94% efficiency		50 kHz switching
SiC Inverter		24 CFM	
	20 kHz switching freq. ≤ 300 CFM Air Flow 115 °C junction temperature 40% more power (kW ↑)	20 kHz switching freq. 115 °C junction temperature 90% lesser	Estimated 30% reduction in filter cost and size (\$1)
	4% more efficiency	cooling (\$↓)	(++)
	All options reduce:	<u>Total System Cost (\$)</u> Output Power (kW)	cummins

Lateral GaN Power Transistors - Emerging Breakthrough Technology

Breakdown Voltage (Volts)

Recommend R&D with:

600V/200A single-chip and 600V/1000A module from GaN Systems.

GOR

65665405

Module

Need to evaluate reliability

Parameter	CoolMOS	Si IGBT	GaN Cascode	GaN E-HEMT
Rating (V/I)	700/28	600/60	600/17	650/30
R _{on} (mΩ)	70	40	150	52
Q _G (nC)	64	165	6.2	6.5
E _{sw} (μJ)	2300	1380	500	150
T _{jmax} (°C)	150	150	150	150
Need External Body Diode?	Yes	Yes	Yes	No Bidirectional

GaN HEMT Chip Layout

Gate Length = 0.5 µm Finger Length = 370 µm Device Width = 22 mm Die Thickness = 4 mils

Two Stages Combined – Each Stage Terminates in 25 Ohms

Thermal Effects

Eile Edit Config Acquire View Analyze Calculate About! ------ Minimize ThermalMap!

26

The Search for the Ideal Semiconductor Power Switch

6500V SPT+ HiPak Modules Rated at 750A

Need single-chip WBG MOSFETs with:

 $V_{on} < 1V$ $I_{on} > 200A$ $T_{jmax} > 200^{\circ}$ C

at the same <u>cost</u> and with same <u>reliability</u> as silicon IGBT

K. Shenai, IEEE PELS Magazine, pp. 27-32, Sept. 2014

pp. 1811-1823, September 1989.

Key Challenges and Opportunities

• High chip and module costs

- Non-optimal performance
- Long-term reliability in a power converter unknown

Fragmented Industry Supply Chain

Unknown reliability

Expensive and Defective Wafers

Parameter	Silicon	SiC
Growth Temperature	< 1000°C	> 2000°C
Method	Czochralski	PVT
Defect Density	< 1/cm ²	10 ² – 10 ⁴ cm ⁻²
Cost	Low	> 20X

Substrate Dislocation Density Trends (collaborator: Dr. Mike Dudley, SUNY-SB)

BPD Density(cm-2)

TED Density(cm-2) Dislocation Density(cm-2)

Defects in State-of-the-Art Commercial 4H-SiC Wafers

(collaborator: Dr. Mike Dudley, SUNY-SB)

(a) (b) (c)

High resolution synchrotron monochromatic X-ray topographs recorded at Argonne's Advanced Photon Source (APS) facility. (a) Back-reflection X-ray topograph (g = 0004) images of close-core threading screw dislocations (TSDs) and basal plane dislocations (BPDs) in a (0001) 4H SiC wafer; (b) Grazing incidence X-ray topograph (g = 11-28) of 4H-SiC substrate showing TSDs (right and left handed) and TEDs; (c) Transmission X-ray topograph showing the images of BPDs.

Performance Evaluation of 4H-SiC JBS Power Diode

K. Shenai, IEEE Trans. ED, Feb. 2015 (to be published)

Defect-Induced Lattice Deformation in 600V SiC JBS Diode

 V_{REV} $I_L \downarrow R$ $C \downarrow DUT$

Defect delineation study performed using hard X-rays at Argonne's Advanced Photon Source (APS).

At 900V reverse bias, TSDs in the vicinity of the metalsemiconductor junction were excited and acted as charge generation centers that caused diode breakdown.

Figure 2. Back reflection topographs recorded from de-capped SiC diode Cree 1AA at (a) 700V showing contrast from TSDs as indicated by arrows; (b) 900V showing enhanced contrast at 1 threading screw dislocation as indicated by arrow; (c) 900V after diode breakdown showing just a small grain. Other parts of the SiC crystal are diffracted to different positions on the X-ray film. The white contrast features are due to the metal leads absorbing the X-ray beam.

K. Shenai et al, Science (to be published)

Reliability Evaluation of SiC Power Diode

200

Acharya and Shenai, PET Conf., 672-277 (2002)

Point Defects in Epitaxial SiC Layers

Influence of Threading Dislocations on Lifetime of Gate Thermal Oxide in SiC MOSFETs Yamamoto et al, Mater. Sci. Forum., 717-720, pp 477-480, (2012)

Time Dependent Dielectric Breakdown (TDDB) detected through photo-emission. Defects responsible for the breakdown, i.e., at breakdown location revealed by etching and x-sectional TEM:

•Mode A : Intrinsic breakdown (no crystallographic defect);

•Mode B: due to TEDs – lifetime shortened by one order of magnitude;

•Mode C (shortest Lifetime): due to TSDs – lifetime shortened by two orders of magnitude

Body Diode On-State Characteristics of SiC MOSFETs

Safe Operating Area (SOA)

K. Shenai, IEEE Trans. ED, Feb. 2015 (to be published)

Dislocations and Micropipes in SiC

Similar image, lower defect density region

dislocations in the seed and in the newly grown crystal. Dislocations of various Burgers vector can be observed (b=[0006] to b~5[0001])

Dislocations in Silicon

Dislocation Density ~2600 cm -2

(SiO

Ar+SiO+CO

rucible shaft

crystal neck

shoulder (cone) single crystal

thermal shield

heater

crucible susceptor

crucible silicon mel

Dislocation Density ~4100 cm ⁻²

From J. Bohm. Realstruktur von Kristallen. E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart 1995

IR transmission optical micrograph of Cu decorated dislocations in Czochralskigrown Si (after Dash, in "Growth and Perfection of Crystals", Wiley, (1958), pp. 361-385).and W.C. Dash,

4r+Si0+C0

Can we build "Taj Mahal" on a cracky foundation and expect it to remain intact for centuries?

Summary and Recommendations

- Wide bandgap (WBG) power semiconductor devices with superior performance than silicon are instrumental for 21st century energy economy.
- <u>Cost</u> of WBG power devices needs to be reduced, performance <u>optimized</u>, and <u>field-reliability</u> demonstrated.
- Fundamental challenge pertains to the starting material <u>low defect</u> <u>density</u>, <u>large-area</u> substrates and epi layers are needed – <u>low-temperatur</u>e growth techniques.
- Radically new homo-epitaxial (for vertical devices) <u>wafer synthesis</u> and <u>MOS</u> <u>channel formation</u> methods need to be developed.
- The role of defects in the <u>ground</u> and <u>excited states</u> needs to be fully understood.
- <u>Failure physics</u> should be investigated and <u>new reliability assessment</u> techniques need to be developed.

Thank you!

Any Questions?

