

Current Status of the APS LINAC and SR / Booster Klystron High-Voltage Power Supplies and the 352-MHz RFTS

G. Trento, A. Cours Accelerator Systems Division Argonne National Laboratory

Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.

LINAC Modulator

Advanced Photon Source, Argonne National Laboratory

LINAC Modulator System

Thyratron

PFN Cabinet Internals

Klystron Tank Assembly

CX1836A Thyratron Operation Lifespan

- Unpredictable life span
- Short average life time:
- High tube consumption rate:
- Growing tube price:
- High filament energy consumption:
- 2012 operating cost:
- High-voltage triggering pulses:

Advanced Photon Source, Argonne National Laboratory

17,300 hrs.

2.4 tubes/year

\$18,300 as of April 2012

26,000 kW*hrs./year

\$45,200

up to 1,500 V

Thyratron vs. Solid-State Switch

	Thyratron	Solid-State Switch
Peak Forward Voltage, kV	70	48 (60)*
Peak Anode Current, kA	10	7 (10)*
Rate of Rise (di/dt), kA/µs	10	30
Triggering Pulses	Up to 1,500 V	Fiber-optic
Filament Power, Watts	610	0

* Numbers in the parentheses are for non-repetitive voltage or current.

S56-12 Solid-State Switch

S56-12 Solid State Switch 10K Pulses @1pps, 42 kV and 4500 A

Courtesy of H. Sanders

Thyratron vs. Solid-State Switch cont.

	Thyratron	Solid-State Switch		
Unit Price	~ \$18,300 US	~ \$9,000 US		
Average Life Time, hrs.	17,300	Theoretically much longer		
Switch Failures per Year	2.4			
Annual Operating Cost	~ \$45,200 (6 RF Stations)	Theoretically much better		
Triggering Pulses	Up to 1,500 V	Fiber-optic		
Repairable	Νο	Yes		
Chemical Waste Problems	Yes	Νο		
Domestic Manufacturer	Νο	Yes		

S56-12 installed within Modulator L3 has > 9k hours of operation.

28KV PFN WAVEFORM Thyratron versus Solid-State Switch

10:07 AM <u>M</u>easure <u>U</u>tilities 9:55 AM <u>File</u> <u>Control</u> <u>S</u>etup Help File Control Setup Measure Utilities Help Acquisition is stopped. 500 MSa/s Acquisition is stopped. 500 MSa/s лè лè 3 On (1) On 1 On 1 0n 2.00 V/div 2 🖓 $\frac{2}{2}$ 3 On \sim $\frac{2}{2}$ 1 On 2.00 V/div 2 🖓 00 V/div 00 V/div VPFN VPFN Vpri Vpri **₽**1 t 595.992 ns 📢 0 🕨 H 200 ns/div 4 O > **T** 10 mV H 200 ns/div 🕠 🗸 🕇 **T** 10 mV ₽ 595.992 ns

Modulator 4 Thyratron.

Saved: 14 APR 2014 09:56:02

Modulator 3 Solid-State.

Saved: 14 APR 2014 10:08:24

Advanced Photon Source, Argonne National Laboratory

PFN Capacitor Original Exceeded 100x Lifetime Specification

Old & New PFN Capacitor

Modulator Control System

Old: Allen-Bradley Controller

- Obsolete PLC hardware & chipset.
- Obsolete cathode ray tube HMI.
- Obsolete PLC software.
- Obsolete HMI software.
- Communication protocol no longer supported by EPICS.

New: Automation Direct Controller

- New PLC hardware & chipset.
- LCD HMI long lasting.
- Current PLC low cost software.
- Free HMI software.
- EPICS supported driver.
- Low cost hardware.

Modulator Control System cont.

Old: Allen-Bradley Controller

- Limited amount of information transmitted PLC↔EPICS, quantity128 - 16 bit words.
- Table transfer discrete and integers (16 bit).
- Open Frame.

New: Automation Direct Controller

- Large amount of information transmitted via floating point (32 bit) and discrete.
- Microprocessor monitored by EPICS.
- RF Group standardized PLC.
- Chassis construction with filtered connectors.
- Last unit installed May 2014.

2MW DC POWER SYSTEM FOR SR / BOOSTER 116k → 150k Hours of Operation

Motorized Fused Disconnect

Old- ABB

- OEM disavowed knowledge of its existence yet sold replacement parts at a premium price.
- Obsolete.
- Averaged 2 failures / year after sacrificial rollers installed. This actually increased reliability!
- Concrete foundation deteriorated and sourced moisture to GPO3.
- Violent open / close action wore out the mechanical components.

New - SQD

- Unit available from OEM.
- Specified to operate 750 X prior to maintenance.
- Installation completed 11/2011.

Transformer / Rectifier Analysis

Acetylene – severe arcing activities Ethylene – overheated oil

RF5 Service Report

- 1 Failed capacitor.
- Qty. 4 Damaged $16-\Omega$, 300-W resistors.
- Loose transformer ground connection.
- Carbon deposit on components and walls.
- Loose transformer core block hardware.
- ~1% of diodes damaged.

Samerica in the

NOTE:

May 2014 Maintenance Period - RF2

TR Set capacitor bank removal.

4 Failed Capacitors.

Advanced Photon Source, Argonne National Laboratory

May 2014 Maintenance Period - RF3

RF3 TR Set diode stack connector fault.

- Plagued by intermittent crowbars during 2014-1.
- Oil Acetylene Content = 878ppm.
- Root Cause: poor banana jack / plug mechanical connection.

Radiation Aged Tetrode Cable

Mod-Anode Tank Internals

• Caused intermittent mod-anode regulation.

2-MW DC KPS Control Interface

Old: Manufacture Design

- Obsolete boards and ICs.
- 486 PC running Windows95 GUI.
- Proprietary E²PROM program.
- GPIB communication error.
- No longer supported by OEM.

New: Automation Direct Controller

- Same details as LINAC Modulator Controller.
- Installation complete.

Crowbar Ignitron Trigger 5C22 → JAN8613 → S33A-4

352-MHz RFTS Line Diagram

Pulsed-Mode Conditioning Principle

RF Conditioning - The objective is always to "touch" surface area with RF; "burn" particulates and induce controlled gas layers desorption (they enhance the secondary electron emission coefficient and cause "local desorption outbursts" which could facilitate arcing events). -Mircea Stirbet

Methodology

- Regulate rf power as a function of vacuum.
- Apply a longer repetition rate than the vacuum reading delay.
- Reduce average power and minimize energy delivered to an unconditioned coupler with rf pulses, then increase duration.

RFTS Conditioning Method Comparison to Achieve 100-kW CW

<u>CW ONLY</u>		$\underline{Pulsed} \rightarrow CW$		
FPC ID#	Conditioning Hours	Component	Conditioning Hours	
ANL-B01	453	FPC C2	48	
ANL-22	496	Tuner ANL-09	54	
ANL-23	473	FPC ANL-25	44	
		FPC ANL-26	53	

FPC Prototype & RFTS 200-kW CW Commissioning

RFTS Shielding -TLD Deep Dose 11 mR/h at door/window.

S38 Cavity Pressure Run 2013-2 Machine Start-up

Sector 38 - RF 4 - Vacuum Instrumentation			
Cavity 1	Cavity 2	Cavity 3	Cavity 4
Digitel MPC	Digitel MPC	Digitel MPC	Digitel MPC
7.2e-07 🖻	6.9e-07 🖻	2.9e-07 🖻	1.0e-07 🖻
(Torr)	(Iorr)	(Iorr)	(Iorr)
GP307	GP307	GP307	GP307
3.0e-06 🖻	3.7e-06 🖻	5.8e-07 🖻	1.9e-06 🖻
Ion Gauge IG1 (Torr) IG2	Ion Gauge IG1 == (Torr) IG2 ==	Ion Gauge IG1 (Torr) IG2	Ion Gauge IG1 (Torr) IG2
Interlock Status	Interlock Status	Interlock Status	Interlock Status
Ion Gauge 🗾	Ion Gauge 🗾	Ion Gauge 🗾	Ion Gauge 📃
Ion Pump	Ion Pump	Ion Pump	Ion Pump

Vacuum Trip Levels are 5e-8 Torr.

S38 Cavity 1	Fundamental Power			High Order Mode
	Coupler	Mechanical Tuner		Damper
Component Removed	MTM-11	ANL-21		535ED-05
Component Installed	ANL-24	ANL-25		535ED-01
S38 Cavity 2	Fundamental Po	wer Coupler	M	lechanical Tuner
Component Remove	d MTM-	-05		ANL-13
Component Installed	ANL-	22		ANL-26

S38 Component 100-kW Test Results

C1 Mechanical Tuner ANL-21

- Conditioning terminated at 82kW @1mS pulse.
- RF Fingers and Bellow temperatures

 2 100° C (US, DS and Aisle), not
 during operation(?).
- No finger stock found in cavities (?).

C2 Mechanical Tuner ANL-13 would not achieve vacuum < 3.5x10⁻⁸ Torr yet conditioned to 100kW CW.

C1 FPC MTM-11 no issues. C1 HOM Damper 535ED-05 no issues.

C2 FPC ANL-21

• Prior arcing noted & continued.

References

Cours A., Trento G., "Replacing Thyratron in the APS LINAC Modulators with Solid-State Switches and Allen-Bradley Controllers with AD PLC", RF-TN-2013-011.

Sander H., Glidden S., "Compact, High Current, High Voltage Solid State Switches for Accelerator Application", Applied Pulsed Power, 2014.

Montesinos E. (CERN); Trento G. (ANL-APS), "Optimal RF Conditioning of the Advanced Photon Source (APS) Fundamental Power Coupler", CERN-ATS-Note-2013-031 TECH.

Trento G., Bromberek D., Morrison L., "Sector 38 Cavity Tuners and High Order Mode Damper RF Test Stand Conditioning Results", RF-TN-2013-012.

Acknowledgement

Our gratitude goes to ASD-RF Group & ADM, AES-MOM & MED and ANL-HP personnel for their efforts. ASD-RF: Roy Agner, Mike Douell, Mike Drackley, Bruce Epperson, Tim Jonasson, Dave Meyer and Mark Moser.

AES-MOM: Cheryl Giacomi, Mark Martens, Wayne Michalek, CJ Sarne and Robert Wilson.

AES-MED: Andre McKenzie and John Pace.

ANL-HP: David Fieramosca, Lauren Gagan and John Vacca.

ASD-ADM: Jim Lang

Thank you for your attention.

Questions?

Advanced Photon Source, Argonne National Laboratory