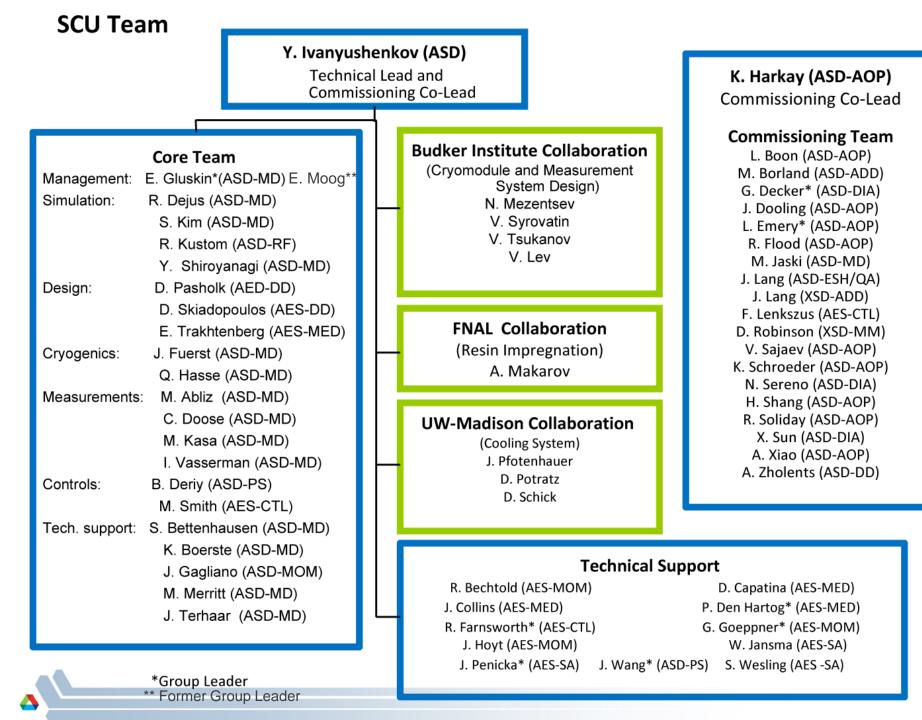


APS Superconducting Undulator Beam Commissioning Results

Katherine Harkay for the APS SU0 Team


NA-PAC 2013, Pasadena, CA October 1, 2013

Advanced Photon Source Upgrade (APS-U) project

Outline

- Introduction
- Commissioning plan
- Unpowered effect on beam
- Powered effect on beam
- Thermal analysis
- Beam-based alignment
- Performance
- Conclusions

Introduction

- Superconducting undulators allow a higher peak magnet field compared to conventional devices, which can greatly benefit light sources.*
- Superconducting technology was used to build a fully-functioning shortperiod test undulator (SCUO) at the Advanced Photon Source. Unique features: out-of-vacuum, thermally isolated beam chamber, cryocoolers.

Photon energy at 1st harmonic, keV20-25 keVPeriod length16 mmMagnetic gap9.5 mmDesign magnetic field0.64 TDesign operating current500 AMagnetic length0.34 mCryostat length2.063 m	Parameter	Value
Period length16 mmMagnetic gap9.5 mmDesign magnetic field0.64 TDesign operating current500 AMagnetic length0.34 m	01	20-25 keV
Magnetic gap9.5 mmDesign magnetic field0.64 TDesign operating current500 AMagnetic length0.34 m	,	4.6
Design magnetic field0.64 TDesign operating current500 AMagnetic length0.34 m	Period length	16 mm
Design operating current500 AMagnetic length0.34 m	Magnetic gap	9.5 mm
Magnetic length 0.34 m	Design magnetic field	0.64 T
	Design operating current	500 A
Cryostat length 2.063 m	Magnetic length	0.34 m
	Cryostat length	2.063 m
Beam operating current 100 mA	Beam operating current	100 mA

SCU0 installed in the APS storage ring in Dec, 2012.

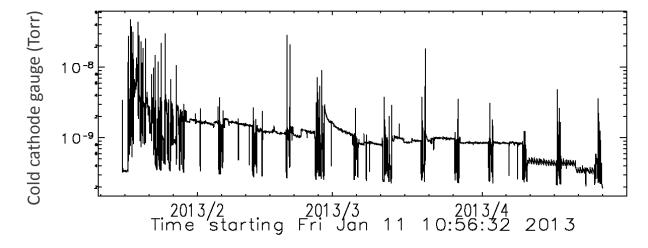
* Y. Ivanyushenkov, FRYBB1 (invited)

Commissioning goals

Overview:

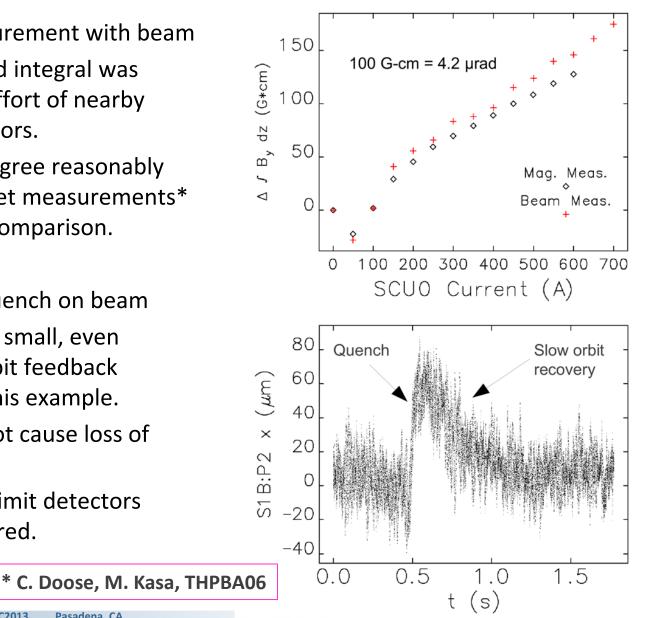
- Detailed commissioning plan completed during extended machine startup, Jan 2013.
- SCU0 released for User operation on Jan 29.

Assess:

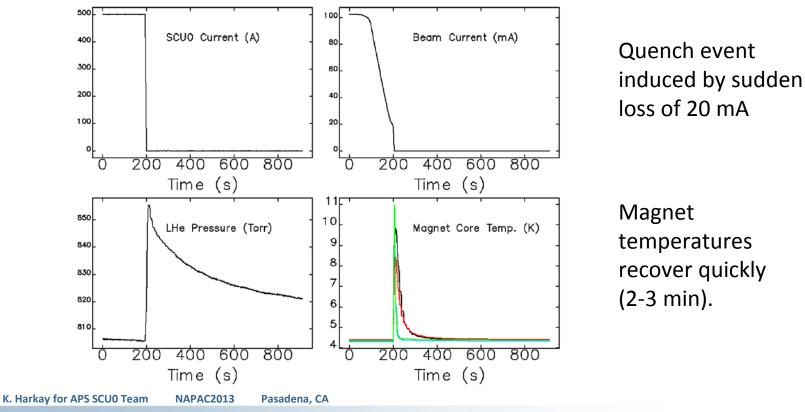

- Thermal sensor and vacuum monitoring
- Vacuum chamber layout and chamber transition heating
- Cryogenic system performance
- Orbit stability with given limits on field integral rate-of-change and absolute error requirements
- Quench response
- Field correction coil response
- Vibration effects of the cryocoolers on beam motion
- Validity of estimates of beam-induced heat load
- Alignment procedures
- X-ray performance
- Storage ring operation procedures

Vacuum performance

Vacuum pressure history, cold cathode gauge


After installation, rough-down prior to bakeout	~2×10 ⁻⁷ Torr
After bakeout of up/downstream transitions	3 nTorr
After SCU0 cooldown, prior to beam injection	0.4 nTorr
After first 100-mA beam (transients)	~10 nTorr
After 10 Amp-hr of beam operation (~4 days)	~3 nTorr
After 200 Amp-hr of beam operation (~3 mos.)	~0.8 nTorr

No beam chamber vacuum pressure issues and no negative effects observed on the beam.


Impact of SCU0 on beam operation

- Field integral measurement with beam
 - Variation in field integral was inferred from effort of nearby steering correctors.
 - Field integrals agree reasonably well with magnet measurements* in preliminary comparison.
- Effect of induced quench on beam
 - Beam motion is small, even without fast orbit feedback running, as in this example.
 - Quench does not cause loss of beam
 - Beam position limit detectors were not triggered.

Quenches

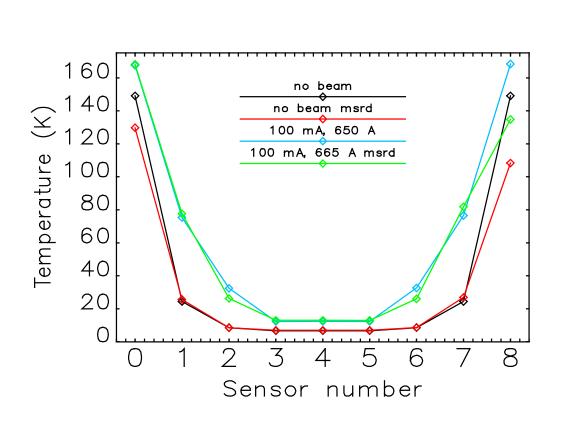
- Device has quenched during unintentional beam dumps. Procedures to mitigate these quenches are under investigation. Device is powered down prior to planned beam dumps.
- With the exception of beam dumps, the device quenched only twice in 8 months of user operations, operating above its 500-A design current. Stored beam was not lost, and total SCU0 downtime was < 1 hr.

Thermal analysis, beam-induced heat load in SCU0

- Protection of SCU0 from excessive beam-induced heat load a key requirement.
- All standard bunch modes were tested at 100 mA; also in a special 150-mA run.
- Predicted image-current heat loads* were compared with the measured heat load using the cryocooler thermal load map (20-K circuit).
- Remarkable agreement, within 1-2 W.
 - * Synchrotron radiation and wakefield heat load is < 1 W.

K. Harkay for APS SCU0 Team NAPAC	2013 Pasadena, CA	1
-----------------------------------	-------------------	---

Total beam current/ number of bunches	Calculated heat load * (W)	Measured heat load, cryocooler load map (W)
100 mA		
24	16.0	14.3
324	2.0	3.4
1+56	11.1	10.8
150 mA		


324	4.6	6.2
-----	-----	-----

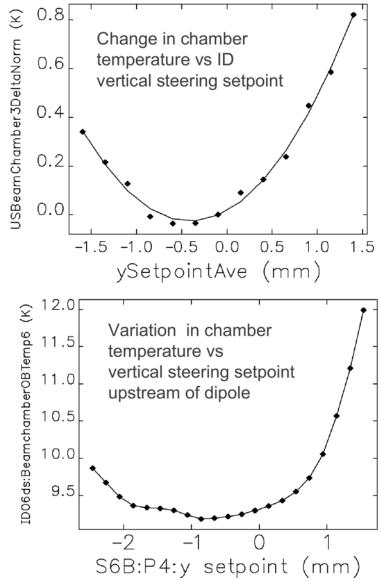
* K. Harkay et al., WEPSM06 (poster)

Measured SCUO chamber temperatures vs. thermal modeling* 2 3 4 5 6

LIALAALAII

core

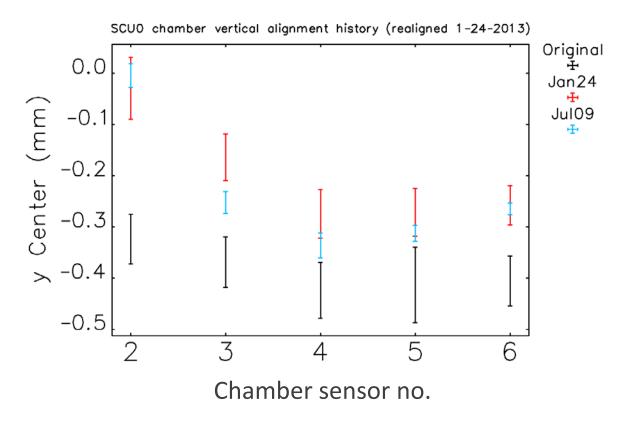
sensor 0


- Analytical imagecurrent heat load modeled using ANSYS.*
- Modeled chamber temperatures are within 10% of the measured temperatures.

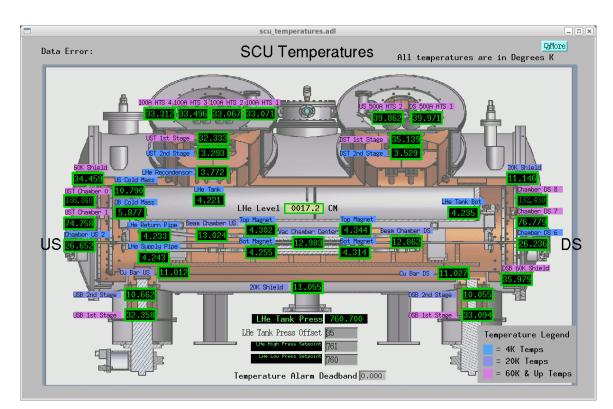
* Y. Shiroyanagi et al., THPAC07 (poster)

Beam-based alignment (BBA) of SCUO chamber using thermal sensors

- Net resistive wall heating increases when the beam is not centered in the chamber.
- This can be used to find the vertical center of the chamber.
- Radiation from the upstream bending magnet can potentially strike the cold chamber.
- BPMs at the dipole are used to steer the beam and minimize the temp.**
- Beam steering in the dipole also shows a vertical chamber displacement, consistent with the ID beam steering.

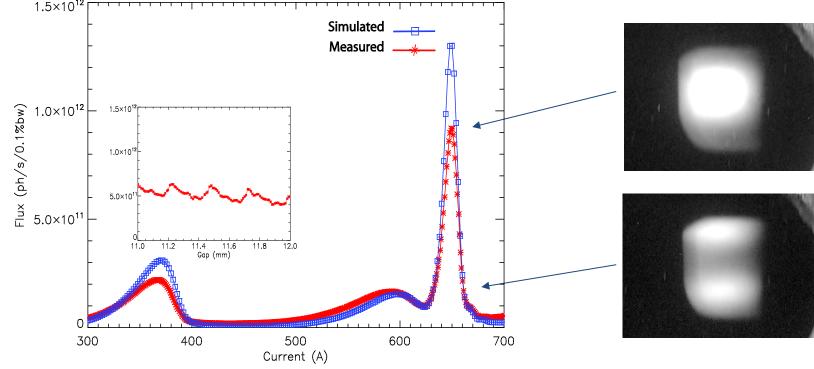

K. Harkay for APS SCU0 Team NAPAC2013 Pasadena, CA

^{**} L. Boon et al., THPAC06 (poster)


Measured SCUO chamber alignment* (ID steering)

- A vertical chamber offset of ~0.3 mm was detected with 100-µm accuracy.
- Accuracy is 10× better than with aperture scan.
- Further benefits of thermal sensor-based BBA:
 - Isolates SCU0 chamber alignment from other vacuum components in the orbit bump.
 - Provides longitudinal spatial resolution (1.6 m length shown).

SCU0 performance

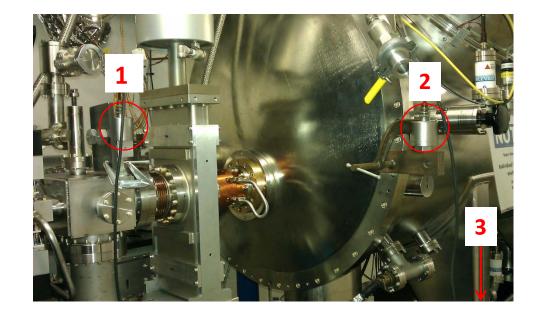

- Designed for operation at 500 A; operates reliably at 650-700 A over 50% of the time.
- Designed for 100 mA beam; operated with 150 mA and no significant issues were identified.
- Magnet cores held at ~4 K even with 16 W of beam power on the beam chamber.
- No loss of He was observed in an 8-month period.

Measured temperatures in the SCU0 cryostat at beam current of 100 mA (24 bunches), SCU0 magnet is off.

SCU0 X-ray performance

- Photon flux of SCU0 was compared with an in-line 3.3-cm-period length permanent magnet hybrid undulator (U33), using a bent-Laue monochromator.
- At 85 keV, the 0.34-m-long SCU0 produced ~45% higher photon flux than the 2.3-m-long U33.

Photon flux comparisons at 85 keV. Main: Simulated and measured SCU0 photon flux . Inset: Measured photon flux for in-line U33.


K. Harkay for APS SCU0 Team NAPAC2013 Pasadena, CA

Conclusions

- An almost decade-long R&D program on development of superconducting undulators at APS was successfully completed in Dec. 2012 with the installation of the first test undulator in the APS storage ring.
- Beam commissioning was highly successful and the measured parameters agree very well with the predictions. All the requirements were satisfied:
 - Cryomodule integrity/operability preserved during installation.
 - Unpowered SCU0 transparent to normal user operation; i.e., does not measurably increase storage ring impedance, or decrease injection efficiency or lifetime.
 - Powered SCU0 does not perturb the beam more than allowed.
 - SCU0 sufficiently protected from beam-induced heat loads.
- Device is in user operation since Jan. 2013, operating reliably above its design current, delivering enhanced photon flux at energies above 50 keV.

Mechanical vibration

- Cryocooler vibration measured at three locations:
 - 1. Beam chamber, 40 cm upstream of SCU0
 - 2. Vacuum vessel, beam height
 - 3. Support girder base (not shown)
- Results for beam chamber shown at right.
- Cryocooler vibration was not observed to adversely affect the beam motion.

Integrated power density (μm rms), from 2 Hz to 100 Hz	
Cryocoolers off	0.38
Cryocoolers on	0.68

Amplitude at 8.375 Hz (μ m rms)		
Cryocoolers off	0.06	
Cryocoolers on	0.57	