

Coaxial Elliptic Helical Undulator

A design concept for an undulator that generates polarized magnetic fields of linear, circular, and elliptical modes

Suk Hong Kim Magnetic Devices Group August 22, 2011

Outline

- Motivated from "Is it possible to change the nature of the circular polarization and to obtain linearly polarized radiation from the same undulator?" [1]
- Magnetic field of a solenoid
- Characteristics of helical undulator magnetic field
- Coaxial (circular) helical undulator
- Coaxial elliptic helical undulator
- Compare the polarized fields with those of an APPLE-II
- Conclusion

[1] D.F. Alferov et al., Sov. Phys. Tech. Phys. 21 (1976) 1408

Magnetic field of an infinitely long helical solenoid

- One-layer solenoid is always helical with a winding pitch angle
- The helix is wound on radius n with a filamentary wire
- Calculate on-axis transverse fields from the Biot-Savart law [2]

[2] W.R. Smyth, *Static and Dynamic Electricity* (McGraw-Hill, New York, 1939), p. 272 The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Rectangular conductors

 B_x in the previous slide at z = 0 is zero because the x-axis goes through the both red and yellow conductors and the field integral of the Biot-Savart law is anti-symmetrical with respect to the coil-winding pitch angle.

Bifilar Helix as a Helical Undulator

- Assumes infinitesimal cross section of the wire
- The on-axis field is proportional to the current in the wire

[3] B.M. Kincaid, J. Appl. Phys. 48 (1977) 2684[4] J.P. Blewett and R. Chasman, J. Appl. Phys. 48 (1977) 2692

- We have an analytical expression with coil cross sections [4]
- Agrees with model calculations: field within 3x10⁻⁵, higher harmonics << 2x10⁻⁷
- When undulator dimensions are scaled according to λ , the field remains unchanged for $j\lambda$ = constant

[5] S.H. Kim, Nucl. Instr. and Meth. A 584 (2008) 266

(Circular) Helical Undulator: off-axis field

$$B_{axis}^{n} = \frac{2\mu_{0}j\lambda}{\pi} \sin\left(\frac{nka}{2}\right) \int_{r_{0}}^{r_{0}+b} \{nkrK_{n-1}(nkr) + K_{n}(nkr)\} \frac{dr}{\lambda} \qquad (k = \frac{2\pi}{\lambda})$$

$$B(0 \le r < r_{0}) = \sum_{n=1,3,5..}^{\infty} B_{axis}^{n} \cdot \{\hat{r}B_{r}^{n} + \hat{\phi}B_{\phi}^{n} + \hat{z}B_{z}^{n}\}$$

$$B_{r}^{n} = [I_{n-1}(nkr) + I_{n+1}(nkr)] \cdot \cos[n(kz - \phi)]$$

$$B_{\phi}^{n} = (\frac{2}{kr})I_{n}(nkr) \cdot \sin[n(kz - \phi)]$$

$$I_{n}, K_{n}: \text{ modified Bessel functions}$$

$$B_{z}^{n} = (-2)I_{n}(nkr) \cdot \sin[n(kz - \phi)]$$

$$B_{\phi}^{1} = [1 + \frac{3(kr)^{2}}{8} + \frac{5(kr)^{4}}{192} + ...]\cos(kz - \phi)$$

$$B_{z}^{1} = -[kr + \frac{(kr)^{3}}{8} + ...]\sin(kz - \phi)$$

Coaxial (Circular) Helical Undulator

 Inner/outer two helical undulators have coil-winding pitch angles in the opposite directions along the same undulator axis

$$\begin{cases} \mathbf{B}_{in} = B_{axis}^{in} \{ \hat{r} \cos(kz - \phi) + \hat{\phi} \sin(kz - \phi) \} \\ \mathbf{B}_{out} = B_{axis}^{out} \{ \hat{r} \cos(kz + \phi) - \hat{\phi} \sin(kz + \phi) \} \end{cases}$$

$$\mathbf{B}_{in} = B_{axis}^{in} \{ \hat{x} \cos(kz) + \hat{y} \sin(kz) \} \qquad \begin{bmatrix} B_{axis}^{in}(T) = 0.8696 \\ B_{out} = B_{axis}^{out} \{ \hat{x} \cos(kz) - \hat{y} \sin(kz) \} \end{bmatrix} \qquad \begin{bmatrix} B_{axis}^{in}(T) = 0.8696 \\ B_{axis}^{out}(T) = 0.4881 \end{bmatrix}$$

- Calculated ~j(critical) @4.2 K
- Linear polarizations, for example:

$$I_{in} \rightarrow \frac{B_{axis}^{out}}{B_{axis}^{in}} I_{in} \qquad I_{out} \rightarrow \pm I_{out}$$

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

-3

0

Period = 38 mm

 $r_{in} = 11 m_{n}$

Coaxial Elliptic Helical Undulator

- Could not derive an analytical expression yet for an ellipse
- By modifying the cross section from the circular to an ellipse, Bx → ~1.2 Bx
 By → ~2 By

 $\begin{cases} \mathbf{B}_{in} = B_{axis}^{in} \{ \hat{x} f_{in} \cos(kz) + \hat{y} \sin(kz) \} \\ \mathbf{B}_{out} = B_{axis}^{out} \{ \hat{x} f_{out} \cos(kz) - \hat{y} \sin(kz) \} \end{cases}$ $\begin{cases} \mathbf{B}_{in}(T) = 1.8175 \cdot \{ \hat{x} \cdot 0.6335 \cdot \cos(kz) + \hat{y} \sin(kz) \} \\ \mathbf{B}_{out}(T) = 1.0048 \cdot \{ \hat{x} \cdot 0.6216 \cdot \cos(kz) - \hat{y} \sin(kz) \} \end{cases}$

Calculated polarized fields are compared with those of an APPLE-II [6]

Туре	Period/gap (mm)	Circular field (T)	Vertical field (T)	Horizontal field (T)	Elliptical field (T)	
APPLE-II*	38/9.5	0.566	0.9292	0.7139	$B_y = 0.8486$ $B_x = 0.2908$	
Elliptic Helical	38/11	1.407	1.990	1.261	B _γ 1.421 0.422 1.152 0.625	B _x 0.642 2.258 0.818 -1.005
Elliptic Helical	26.6/11	0.580	1.305	0.696	B _y 0.974 0.282 0.628 0.346	B _x 0.533 1.881 1.207 -0.674

*Calculated by S. Sasaki with B_r = 1.27 T

[6] S. Sasaki, Nucl. Instr. And Meth. A 347 (1994) 83

$j \lambda$ constant scaling law for an Elliptic Helical Undulator

- U38: $\lambda = 38 \text{ mm}, \quad j = 1.0 \text{ kA/mm}^2$
- U76: $\lambda = 76 \text{ mm}, \quad j = 0.5 \text{ kA/mm}^2$
- U38x0.7: λ = 26.6 mm, *j* = 1/0.7 kA/mm²
- $\rightarrow j \lambda = 38$ kA/mm for the three
- Have the same calculated on-axis fields within ~1 mT

Issues

- Tolerances for the coaxial alignment
- Effective magnetic lengths of the inner and outer units
- Off-axis field
- One end for the inner unit

- - -

Conclusion

- Proposed a coaxial elliptic helical undulator for use in a storage ring
- The undulator partially follows the $j\lambda$ constant scaling law
- Calculated polarized fields for a period of 38 mm were about twice of those for an APPLE-II
 - Fields for a period of 26.6 mm were slightly higher than those for the 38-mm APPLE-II
- Need further analysis