

Layout

- General discussion on benefits of symmetry
- Application to 8RLSS lattice
- Application to sextupole failure correction
- Example when breaking symmetry gives better results

What is symmetry in storage rings?

Symmetric storage rings consist of many repeating cells: APS consists of 40 identical cells

In addition, cells themselves have reflective symmetry

Why are repeating cells good?

- In ideal machine, particle traveling through the accelerator lattice sees repeating cells, it has no way of knowing that 40 cells make up storage ring
- Therefore, the only betatron tune that exists for that particle is betatron tune per cell v_c

- For example, for APS v_{xc} =0.905 and v_{yc} =0.482

- All resonances that can be driven by the lattice magnets exist:

•
$$v_{xc} = 1$$
, $3v_{xc} = 2$, or $v_{xc} + 2v_{yc} = 2$

- Physicist in MCR still measures betatron tune per full turn, or $v_x = 36.20$ and $v_y = 19.27$
 - One might think that dangerous resonances are nearby like

•
$$v_x = 36$$
, $3v_x = 36.33$, or $v_y = 19$

- But when those resonances recalculated to one cell, they become:

•
$$v_{xc} = 0.9$$
, $3v_{xc} = 0.908$, or $v_{yc} = 0.475$

- They are not resonances at all!

Why are repeating cells good?

- Only those resonances are excited, that are resonances for one cell

 - $v_{xc} = 1$ => $v_{x} = 40$ $3v_{xc} = 2$ => $3v_{x} = 80$
 - $v_{xc} + 2v_{yc} = 2 = > v_x + 2v_y = 80$
- Conclusion: the only allowed resonances are
 - $k \times v_{xc} + m \times v_{yc} = N \times n$, where N is the number of repeating cells

Hamiltonian of nonlinear motion

 Hamiltonian of the nonlinear motion can be expanded into Fourier harmonics of several types that look like this:

$$A_{1m} = \int_{0}^{2\pi} \beta_x^{3/2} S \cos(\psi_x - (\nu - m)\theta) d\theta$$

- It is the integration of repeating terms that leads to their cancellation
- Non only beta functions need to repeat, but sextupoles too
- Having reflective symmetry inside cells helps too
 - When performing resonance harmonic expansion, only cosine terms remain non-zero

Real machine

- Real machines have errors that do not repeat, therefore real machines have all resonances
- But those resonances are defined not by strong lattice magnets but by lattice magnet errors
 - Errors are usually of the order of 1% of the magnet strength
 - Can be corrected

Lattice optimization for APS-U¹

- Previous version of APS-U lattice assumed 8 Long Straight Section insertions (LSS)
- Each LSS insertion means changes to beta functions in 2 cells or symmetry breaking
- LSS were placed in "convenient" locations that we simply called random – 8RLSS
- At first, such symmetry breaking was considered unworkable
- We decided to adjust sextupoles around LSS insertions in attempt to recover symmetry
- We used multi-objective genetic optimization
 - Direct optimization based on tracking results
 - Objectives: dynamic acceptance and lifetime
 - Dynamic acceptance is dynamic aperture with physical apertures taken into account
 - Lifetime is computed based on Local Momentum Acceptance calculation²

¹M. Borland et al., LS-319 ²A. Xiao, M. Borland, PAC03

8RLSS lattice functions

Twiss parameters for /home/helios/oagData/sr/lattices/lss-8random/aps

APS-U lattice optimization results

 We were able to develop APS-U lattice with 8 LSS insertions that has lifetime and injection efficiency as good as the present APS lattice

Sextupole failure

- Recently, we had an incident when a sextupole power supply tripped during user top-up operation
 - Lifetime and injection efficiency dropped

- Power supply was later reset
- It can happen again, and if the power supply would no reset, we would need to operate with lower lifetime until next intervention

Sextupole failure correction

- We used sophisticated optimization to find such settings for nearby sextupoles that partially recover symmetry and lifetime and injection efficiency
- This optimization was developed initially for APS-U lattice development
 - Multi-objective optimization that uses injection efficiency and lifetime

Optimization results

DA for A:S4

LMA for A:S2

Black – initial lattice Red – after failure Blue after correction

Experimental tests of sextupole failure correction

Sextupole	State	Lifetime (min)	Injection (%)
A:S4	Initial lattice	440	85
	After failure	230	60
	After correction	330	75
A:S2	Initial lattice	550	80
	After failure	430	70
	After correction	550	80
B:S2	Initial lattice	540	80
	After failure	390	75
	After correction	440	75

Interesting finding during 8RLSS optimization¹

 We found that the dynamic acceptance of the lattice is larger than the physical aperture

¹M. Borland

Explanation - physical aperture is not symmetric

- APS physical aperture does not match lattice symmetry
 - All ID vacuum chambers have -20mm horizontal and ±4mm vertical
 - ID4 has -15mm horizontal and ±2.5mm vertical
- Optimizer changed sextupoles such that phase space at ID4 changed

Conclusions

- Symmetry in storage rings plays an important role in improving nonlinear beam dynamics
- Symmetry of beta functions together with sextupoles is important, which opens way to create lattices with non-symmetric beta functions where sextupoles are used to recover symmetry
 - Extensive computing power is required
- Imposing non-symmetrical physical aperture limitations can lead to non-symmetrical solutions that