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Overview
Introduction to Nocibur

- Rubicon backwards: Inverse Inverse Free Electron Laser mechanism

Motivation

- Using strong undulator tapering for high extraction efficiency

The experiment

- The set-up, the results

Future plans

- re-circulated Nocibur: measure some gain

Introduction to Double Buncher

- concept, experiment, results

Conclusion



The Nocibur Inverse Inverse Free Electron Laser

The IIFEL
From IFEL to IIFEL

- Resonant energy exchange between a laser and electron beam inside of a tapered undulator:

                              gradient   phase synchronicity

- choose design “resonant” phase and energy to satisfy above equation

- r < 0  accelerating    r > 0  deceleratingψ → ψ →    

- Rubicon IFEL: Helical halbach undulator – CO2 laser seed – BNL ATF

- 52 MeV  92 MeV →
- Nocibur: reverse Rubicon IFEL and re-tune

- 65 MeV  35 MeV→
- IIFEL vs. FEL

- Post saturation regime: bunched beam, re-focused large seed, strong tapering for optimized 

energy extraction, stimulated emission: (Eseed + Egain)²-(Eseed)² = 2Eseed*Egain +(Egain)²
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The Nocibur Inverse Inverse Free Electron Laser

Why Nocibur?
- FEL efficiency:

proportional to ρ < 0.5%

- Tapering: extend FEL past

saturation, increase 

efficiency

- ELF experiment: GHz

frequencies – waveguide

~ 30% efficiency 

- PALADIN: no waveguide

optical wavelengths

- XFEL: tapering for TW level

- TESSA

- Potential compact EUV radiation

source 

- Nocibur: Low gain regime of

TESSA scheme. Demonstrate

high extraction efficiency

in “optical regime”

- Rubicon undulator available: tunable for resonant energies 

between ~30-100 MeV

- choose 65 MeV: max stable energy where ATF could run with  

chirp

- 100-300 GW: stable seed power from CO2 laser main amplifier

- Demonstration of high electro-optical conversion efficiency at 

“optical” wavelength 



The experiment
IFEL Tapering

- 

E-Beam energy 65 →  35 MeV

emittance 2 mm-mrad

σxy (waist) 100 μm

Laser Wavelength 10.3 μm

Rayleigh Range 0.3 m

Laser Waist 1 mm

Laser Power 200 GW

 E-beam current  100 A

 E-beam charge  100 pC

 λw buncher  0.05 m (1 period)

 Chicane: R56   21 → 59 μm

 period tapering  0.06 - 0.04 m

 K tapering  2.01 - 1.19

- Laser focused by 3.5 m NaCl lens

- e-beam focused by quadrupole doublet

- Laser e-beam timing: Ge switch

- fine timing: scan delay stage

- optimize injection phase: scan pre-

buncher R56

- measure e-beam spectrum on 

phosphor screen 
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Pre Buncher- Single period, planar, halbach undulator

 - Permanent magnet, variable gap chicane

- Laser imparts sinusoidal energy modulation

- Chicane dispersion converts to density 

modulation

- Chicane delay allows for control of injection 

phase

Modulator Chicane



Nocibur
BLIS measurements
- Chirp e-beam (vary linac phase)

- compress with  ATF chicane

- generate Coherent Transition Radiation

- measure auto correlation of CTR with Michelson 

interferometer 

- 3 Gaussian fits to estimate bunch length



•  ~30 % deceleration of 300 pC, 100 A beam 
from 65 to 35 MeV

•  expect this energy extraction to produce ~ 1 
GW of 10.3 μm radiation on top of ~ 100 GW 
 ~3 mJ of energy

•  Trapping optimization: 
•  Vary PreBuncher gap

•  Potential motor/gear 
slippage creates kick and 
mismatch with GPT 
simulation

•  Vary lens position
•  Possible clipping through 

PreBuncher pipe
•  Increase current

•  emittance growth

Spectrometer Data - 5 degree chirp Compression at FPOP3

Nocibur
1st run: measuring the radiation



Nocibur
1st run: measuring the radiation

- a misguided attempt: run with linear polarization, 

measure radiation in perpendicular polarization

- separate gain from seed (Does not work)

- perpendicular polarization: No stimulated emission!

- spectral broadening of generated radiation

- larger diffraction of generated radiation

- No correlation between e-beam on and e-beam off

Pyro camera data 

Spectrum measurement after 

brewster window, blocking core of 

spectrum

E-beam off – Laser: 0.782 J 

E-beam on – Laser: 0.87 J 



The experiment
Some results
- 45% of particles decelerated from 65  35 MeV→
- 30% conversion efficiency

- good agreement with GPT simulations

- couldn't measure radiation growth

hindered by large seed – broke a pyro camera trying

- Genesis simulations show expected radiation

growth for electron beam energy loss 

ϵ∝( ⃗E seed+ ⃗E gain)
2
=∣E seed∣

2
+2ℜ[ ⃗E seed⋅ ⃗E gain]+∣E gain∣

2
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Potential future projects at ATF

rNocibur (cavity gain)

Measure gain from high efficiency Nocibur interaction via recirculation scheme 
Increase efficiency with double buncher (90% decelerated – 40% efficiency)



Conclusions
- Demonstrated 30% extraction 

efficiency in a laser driven strongly 

tapered undulator interaction: Low 

gain regime of TESSA mechanism

- High gain regime: requires a longer 

undulator and a brighter beam.

- Could potentially measure 

accumulated gain in recirculation 

scheme

Trials & 
tribulations



Pondermotive 
Bucket

Resonant 
phase:
0, π/8, π/4, 
3π/8

Pre-bunching

Tapered undulators

- Resonant energy exchange between a laser and electron beam inside of an 

undulator:

                              gradient   phase synchronicity

- choose design “resonant” phase and energy to satisfy above equation

- resonant phase +/- π/4: tradeoff between gradient and bucket size  
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Pre-buncher: A work horse

Single Buncher

Rubicon IFEL experiment
52 MeV  95 MeV→
Increased fraction accelerated: 30%  60%→
Demonstrated emittance conservation

Nocibur high efficiency energy extraction

65 MeV  35 MeV→
45% decelerated – 30% efficiency

RubiconICS 
12 KeV X-Rays from 80 MeV

Un- accelerated beam

2.3 μm emittance

Accelerated beam

2.4 μm emittance
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The double buncher

Simple model
1st modulator 1st chicane

2nd modulator 2nd chicane

½ period planar

undulator

(small modulation)

Large R56 chicane 

compressor

(over-rotate)

1 period planar

undulator

(large modulation)

Utilize pre-

existing

pre-buncher

Small R56 chicane 

compressor

(bunch)

A. ~97% of particles 

inside of 

pondermotive bucket



Rubicon double buncher
Theory: design of the double buncher

bdbl=2∣ ∑
m=−∞

m=∞

J−m−1[A1 B2+(m+1)A1 B1] Jm[ A2B2]e
−(B2+(m+1)B 1)

2
/2
∣

p=
γ−γr
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A=
k K K l [ J 0(ζ)−J 1(ζ)]N wλw
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)

B=
R56σγ k

γr

- Double buncher designed with original 
pre-buncher as second buncher

- Designed for Rubicon IFEL experiment: 
- 60 MeV/m gradient
- resonant phase: -π/4
- large initial ponderomotive bucket 
compared to energy spread

- Choose half period, 7 cm period 
undulator for new buncher

- large gap (laser diffraction)
- close to optimal A2/A1

- optimize bunching factor, tweak 
parameters to maximize number of 
particles injected in bucket

- A2 < initial bucket height
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The double buncher

Genesis 
Simulations
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The double buncher

Simulations
E-Beam energy 52 →  80 MeV

emittance 2 mm-mrad

σxy (waist) 100 μm

Laser Wavelength 10.3 μm

Rayleigh Range 0.55 m

Laser Waist 1.4 mm

Laser Power 166 GW

λw (1st modulator)  0.07 m (half period)

Chicane 1: R56  215 μm

λw (2nd modulator)  0.05 m (1 period)

Chicane 2: R56   80 μm

period tapering  0.04 -0.06 m

K tapering 2.03-2.56

97 % accelerated!

97 % accelerated!

Genesis – 3D Time Dependent

GPT – 3D Radia field maps



- Make use of electro-magnetic chicane (3/4” gap)
- water cooled peak field ~ 0.4 T @ 140 A
- Total length ~30 cm  

- build compact half period
Modulator ~ 10 cm 

- Utilize old pre-buncher
- total length ~ 30 cm

- Both new modulator and
old pre-buncher can be
removed from beamline.

- EM chicane field can be 
zeroed after de-gaussing



New buncher field 
varying EM chicane 
current

Old buncher 
field varying 
chicane gap



Incoming CO2 laser

f=4.0 m NaCl lens

Adjustable Cu 
mirror

Currently using permanent 
magnet spectrometer located in 
chamber

Incoming electron beam

- Laser focused by 4 m NaCl lens, 
coupled into beamline through NaCl 
window.
- Overlaps with e-beam after dipole
- Note: Ipop 1-6 are beam position 
monitors
- Laser electron beam timing: 

- Germanium switch: look for 
transmission of CO2

- adjust delay stage: optimize 
IFEL capture



Pre-bunched Rubicon
PBR: experimental set up pt. II

Pyro camera for waist scan or 
photodiode for Ge timing

Alignment iris

- vary laser polarization: rotate quarter wave plate

- vary laser waist position: move lens

- monitor high power laser energy and pointing stability on ceiling



Chicane motor steps (millions) Chicane current (A)

- After optimizing fine timing: scan over first pre-buncher chicane gap (only one 
buncher installed) varying injection phase and compression
- Set first chicane gap at peak: Scan over second buncher EM chicane current
- Blue lines show GPT simulation predictions.  Note: need to take into account 
differing laser energy



No pre-bunching: ~25% accelerated
(blue)

Single buncher: ~45% accelerated
(red)

Double buncher: ~70% accelerated
(yellow) 

Nearly 100% of electrons 
accelerated past the initial energy 
(52 MeV)

De-trapping before final energy 
may be due to laser rayleigh range 
not matching Rubicon tune, still 
investigating



36 consecutive shots demonstrating IFEL double buncher 
stability. Note: top shot is the unaccelerated electron beam 
for reference.

IFEL double buncher shot showing 80% acceleration. 
Note: This shot was taken during a quadrupole scan and 
the accelerated beam was defocused.



Q=-25A

Q=-20A

Q=-15A

Q=-10A

Q=-7A

Q=-5A

Q=-2A

Q=0A

Q=2A

Q=5A

Q=10A

Accelerated beam 
εy = 2.6 mm-mrad

Un-accelerated 
beam εy = 2.54 
mm-mrad

Upperbound of 
energy spread σγ/γ 
~ 1%



Potential issues:
- so far we've only looked in depth at the Rubicon case 

- large seed, large bucket compared to energy spread
- short bunch length compared to laser (no compression/no chirp)

- small initial bucket compared to energy spread
- time dependent effects/short pulse laser

Only ~80% 
injected in 
bucket
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