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Tapering Enhanced Stimulated Superradiant Amplification

 Reversing the laser-acceleration process, we can extract a large fraction
of the energy from an electron beam provided:

— A high current, microbunched input e-beam
— An intense input seed
— Gradient matching to exploit the growing radiation field
GIT algorithm @ UCLA, but many others around (SLAC, DESY, Lund)
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LEA TESSA-266 parameters

Beam Energy

Peak current

Emittance

Energy spread

RMS spot size in undulator
Beta function

Undulator length
Radiation wavelength
Seed power

Interaction geometry

300 MeV

1 kA

2.um
0.02%-0.1%
30 um —40 um
54cm—-1m
2m

266 nm

1 GW

helical



Conceptual design of experiment
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Radiation diagnostic:
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Halbach-type helical undulator
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Buncher design

With P, = 1GW and 0.5 mm spot size a 25 cm modulator yields

0.4 MeV energy modulation >> uncorrelated energy spread
after linac

With 0.4 MeV/300 MeV, R56 = 50 um gets bunching at 266 nm

Double buncher requires 3 times smaller DE (and 3-4 times
larger R56), still larger than energy spread from linac.

Total slippage ~ 300 fs )
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Double buncher need?

A, = energy modulation from second buncher normalized to beam intrinsic energy spread o,

Double buncher scheme really pays off
when ponderomotive bucket from initial

1 | I |
seed is much larger (i.e. 20 times) than 0s
o .
g bdoublemax(Az)O.G
ﬂ _ 2\/KK19(1/J7~) bsingle(AZ) 0.4
Y max V1 + K? 0.2

For 1 GW input power and GV/m fields double buncher makes sense

only if relative energy spread < 0.02 %



Laser requirements

Minimum pulse length is set mainly by slippage + e-beam bunch length -> 0.5 ps — 1 ps

1mJ-1ps @ 266 nm Commercially available (~ 250 kS)
Upgrade existing GTF laser option (currently at UCLA)

Time-bandwidth oscillator + Nd: glass regen
0.4 mJ 2 ps @ 266 nm. Repetition rate <10 Hz.
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Fig. 1: A block diagram of the APS photoinjector drive laser system.

Table 1: Basic Parameters of the APS Photoinjector Drive Laser System

Repetition rate | Encrgy/power Pulsc length | Timing jitter
(Hz)
Oscillator 119 MHz 120 mW @ 1053 nm | 200 fs 200 fs
(tbwp GLX 200)
Amplifier 6 Hz 6 mJ @ 1053 nm 2-10 ps
0.4 mJ (@ 263 nm




Genesis Informed Tapering Scheme

Solve tapering equations with help of 3D FEL code Genesis
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Solve tapering period-by-period

 Run Genesis on a period

e Select capturable particles (within the ponderomotive bucket)

e Measure min intensity seen by particles => threshold for capture
e (Calculate new period and undulator parameter

e Saves taper as well as simulated data

GITS offers options to dynamically optimize different simulated e-beam
and radiation parameters: maximize power transfer, minimize detrapping,

play with resonant phase, etc.

Originally developed for loaded IFEL design.



Generate optimal tapering profile

3 mm gap undulator, Br = 1.5 T, 30 micron matched beam size
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iation outpu

1 kA, 2 um emittance, 30 um rms spot size, using prebunched beam
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Helical undulator
design

Transverse displacemnet (mm)

First strongly tapered high field helical
undulator

2 orthogonal Halbach undulators with
varying period and field strength
NdFeB magnets B, = 1.22T
Entrance/exit periods keep particle
oscillation about axis

Pipe of 14 mm diameter maintains high
vacuum and low laser loses

Estimated particle

Longitudinal displacement (mm)



Tapered Helical Undulator technology

e 54 cm Rubicon undulator
— Fairly inexpensive
— Machine shop well prepared
— |t has been retuned multiple times

— Still workhorse at ATF (no permanent magnet
degradation after 4 years)

 Extend technology to2 m
— Magnetic forces study
— Section breaks + in-undulator diagnostics
— Vacuum pipe options



To do

Use realistic beam distributions

Optimize tapering including focusing channel
Time-dependent simulations

Full start-to-end
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