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– Tapered FEL 
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• Sideband instability
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– Igniter pulse: 1 µm. No seed: EUV 
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Particle acceleration // Radiation generation

• “To be efficient an accelerator must be able to operate in reverse”, R. Ruth (SLAC)
• Note that one of the schemes widely discussed in AAC notably violates this principle. 

(LWFA)
• IFEL is on the other hand a particularly advantageous accelerator scheme in this regard

– Plane wave or far field accelerator: minimal 3D effects. Transverse beam cross-
section can be mm-size for µm-scale accelerating wavelength.

– Vacuum-based accelerator. No mechanism for energy loss. Efficient energy 
exchange

– Tunability. Resonance can be adjusted using undulator parameters and beam energy 
(from FIR to X-rays) 

In an FEL energy in the e-beam is 
transferred to a radiation field

In an IFEL the electron beam absorbs 
energy from a radiation field.
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Early days of FEL tapering

• KMR seminal paper
– Hamiltonian model
– Concept of resonant phase
– Instabilities 

• At that time extracting energy from e-beam was 
attractive to Star-Wars program

• ELF experiment circa 1985 LLNL Orzechowski et al., PRL 57, 2172 (1986). 

35 GHz (up to 250 GHz) waveguide 
FEL. 
Up to 35 % efficiency
empirical optimization very close to 
KMR-style self-design taper 
Good matching with simulations



Paladin experiment
• Shorter wavelength 10 um follow up of successful ELF tests @LLNL
• Based on 45-MeV Advanced Test Accelerator 

designed for 10-kA induction linac for charged particle 
beam propagation experiments, not for 1-2 kA high 
brightness applications 

• Original hope: 2+ kA & 30 dB gain 
relative to 5 MW seed 

• Results were: 0.5 kA & 14 dB gain, 
saturation @12-15 m 

Disappointing results !
Insufficient beam brightness



Renewed interest from the FEL 
community in tapering in 2010s

• Reverse tapering + chirped beam for single spike generation
• Mostly driven by TeraWatt XFEL quest
• SASE Tapering: ~3X output pulse energy gain relative to 

saturation 

• Self-seeded cases
– Jiao et al. (2011+/SLAC) 
– Mak-Curbis-Werin (2014+/Lund) 
– Schneidmiller&Yurkov (2014+/DESY) 
– C. Emma & C. Pellegrini (2015-2016:UCLA/SLAC) 

Always starting from exponential gain initial conditions
No discussion of sidebands !



Rubicon IFEL experiment
• Rubicon IFEL experiment demonstrated high quality 

acceleration of a 50 MeV e-beam at BNL ATF in a 
strongly tapered helical undulator

100 MeV/m
11 periods
0.5 m undulator
300 GW CO2 laser

93-100 MeV peak (tunable)
< 2 % energy spread
<1.5% energy jitter
Emittance preservationPrebuncher



NOCIBUR IFEL deceleration experiment
• Use RUBICON IFEL set up in reverse at BNL ATF
• Reversed and retapered the 0.5 m undulator for high gradient deceleration
• Demonstrated >30% efficiency from a relativistic electron beam in half a meter

Undulator parameters
Resonant energy

UndulatorPrebuncher

• Maximized capture with variable gap prebuncher chicane
• Up to 45% of 100 pC beam captured and decelerated
• 30% energy extraction efficiency (2 mJ)



Tapering Enhanced Stimulated Superradiant Amplification
• Reversing the laser-acceleration process, we can extract a large fraction 

of the energy from an electron beam provided:
– A high current, microbunched input e-beam
– An intense input seed 
– Gradient matching to exploit the growing radiation field

GIT algorithm @ UCLA, but many others around (SLAC, DESY, Lund)

IFEL deceleration

Duris et al. NJP (2015)
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Matching undulator tapering to 
ponderomotive gradient

From the resonance condition, assuming 
constant period undulator
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From the ponderomotive interaction 
in an undulator with an EM wave 
having peak field E0

 Recipe to determine undulator tapering (constant period case)

 Numerical implementation.

 Allow for analytical estimates
o Assume constant (or analytical + diffraction) field – low gain 

TESSA

o Include radiation gain 1D only – high gain TESSA



Efficiency of single pass
for constant undulator period
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Once tapering ( ∆K ) is known, then efficiency is just proportional to 
relative energy loss of particles

for full trapping



Low gain – Assume frozen field
Assuming constant period undulator and low gain (lower bound estimate)

∆K= 4𝜋𝜋𝐾𝐾𝑙𝑙 sin𝜓𝜓𝑟𝑟𝑁𝑁𝑤𝑤

250 MeV, 1 um radiation, K0 = 4



Diffraction effects

• Including diffraction effects,  
optimize
– Gradient
– Interaction length 
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Assume Gaussian mode seed with 
Rayleigh range zr
and waist in the middle of undulator
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Slippage effects
• Every undulator period radiation slips forward one wavelength
• The tail of the beam doesn’t fully decelerate => decreased energy 

efficiency
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Steady state part
Slippage part
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Double buncher. Adiabatic capture
• Efficiency strongly dependent on fraction of particles captured 

and decelerated
• Single buncher + R56 is first step to improve capture, but 

severely limited by non-linearities of cos-like potential
• Putting together two ideas:

– Diffraction-based adiabatic capture
– Piece-wise bunching

Use diffraction to increase strength

Use two stage modulator + chicane to 
slowly compress all the particles 

BNL recent results to be discussed in next talk by N. Sudar !
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Perave: a 1-D period-averaged, time-dependent FEL code

Basics of  the code

✴Electron E.O.M. (1) and (2) integrated via RK-4

✴Includes shot-noise via quiet loading

✴Field equation (3) solved in SVEA approx. 
including slippage

Example run: Radiation power and particle dynamics
Motivation for code

Physics
✴Study time-dependent physics of  tapered FELs 

in absence of  diffraction & 3-D effects
✴Study the impact of  the sideband instability on 

tapered FELs
✴Determine the effectiveness of  methods of  

sideband suppression 
Practical
✴Fast compute time: single bucket simulation 

runs in ≈1s

(1) (2)

(3)

C. Emma (UCLA)



Perave: first results, benchmarking KMR theory

Testing theoretical Predictions

(1)Efficiency is proportional to product of  deceleration gradient and 
bucket area f(ψR) ✔︎

(2)Sideband Gain is inversely proportional to ψR ✔︎

(3)Relative sideband growth length is inversely proportional to ψR

✔︎

(4)To do: Gain modulation/detuning can be used to suppress 
sidebands 

C. Emma (UCLA)
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Solve tapering equations with help of 3D FEL code Genesis

Solve tapering period-by-period 
• Run Genesis on a period
• Select capturable particles (within the ponderomotive bucket)
• Measure min intensity seen by particles => threshold for capture
• Calculate new period and undulator parameter
• Saves taper as well as simulated data

GITS offers options to dynamically optimize different simulated e-beam 
and radiation parameters: maximize power transfer, minimize detrapping, 
play with resonant phase, etc.

Empirical/numerical tapering optimization:
Genesis Informed Tapering Scheme

Use Halbach formula to relate 
undulator period and amplitude



TESSA experiments & roadmap

Nocibur

Proof-of-principle 
agreement 100 GW 10 um 
driver. Deceleration from 
65 - > 35 MeV

Validation of the model 
and the simulation tool

Relative gain is inversely 
proportional to efficiency 
so no measurement of 
radiation amplification

266 nm single pass 

300 MeV 1000 A
10-15 % efficiency in 2 m 
long undulator

Next experimental 
demonstration @ 266 nm

Requires high energy high 
brightness beamline

TESSA-LEA !

13.5 nm for EUV

3 kA @ 1 GeV = 3 TW beam 
power available

Use high intensity input seed 
(from refocusing seeded FEL. 
GW afterburner)

Very high gain regime
45% efficiency in 15 m.

z (m)

Duris et al. NJP (2015)



TESSA @ LEA
Beam Energy 300 MeV

Peak current 1 kA

Emittance 2 um

Energy spread 0.02 % - 0.1 %

RMS spot size in undulator 30 um – 40 um

Beta function 54 cm – 1 m

Undulator length 2 m

Radiation wavelength 266 nm

Seed power 1 GW

Interaction geometry helical

Detailed discussion in this afternoon talk ! 



TESSA at 13.5 nm : Afterburner concept
• 4 kA @ 1 GeV = 4 TW beam 

power available
• Refocusing FEL (~GW) to 

recreate high intensity 
condition

• 45% efficiency in 23 meters
• High rep rate => high average 

power

FEL undulator (saturated)

Re-focusing 
optics

TESSA afterburnerPrebuncher



From: Gemini observatory 
http://www.gemini.edu/?q=node/10789

Air is transparent 
to 1 um radiation

Towards high average power coherent 
tunable radiation sources

• Where do you get the high power seed?
• Oscillator configuration

– Starting from noise : start-up analysis
– Starting from igniter pulse  Ignition feedback 

regenerative amplifier (IFRA) (Zholents et al. 
Proc. SPIE’98).

• Applications

TESSAprebuncher

~50% efficiency * high average power e-beams
=> high average power laser

Igniter

 Atmosphere is transparent to 1 um radiation
– Power beaming to high-bandwidth satellites 
– Deorbit burning of space trash
– Boosting satellites to higher orbits

 EUV Lithography



TESSA Oscillator  = TESSO
• Calculate steady state efficiency (seed-power dependent). 
• Stable resonator design using two spherical mirrors and a beam splitter for 

outcoupling.
• Intensity on optics → spot size → cavity length → rep rate
• Assuming LCLS2-like MHz-class injector c / N MHz = 300/N m

Nph ≈ α Ne
2

Impose that at steady state the recirculated power is constant
Maximizing efficiency, ηr = 50 %
Interestingly if one computes the total amount of output energy



High power 1 µm oscillator design

200 und 
periods

Parameter Value

E-beam energy 250 MeV

Current 500 A

Charge 1 nC

Emittance 1 μm

Undulator length 4 m

Laser wavelength 1 μm

Rayleigh range 48 cm

Laser waist 1.8 m

Input peak power 50 GW

Output peak power 127 GW

Net efficiency 54%

• 250 MeV * 500 A = 125 GW beam power
• Seed power is 50 GW (40% of beam power)
• Diffraction of stimulated radiation limits 

undulator length to 4 m to keep undulator 
gap small 

• Prebunching to capture more (nearly all) 
charge increases net efficiency to 50%



Full simulation model of oscillator
• Use field propagator + GENESIS to simulate multi-pass in cavity
• Optimize focusing mirrors
• Optimize return fraction 

72 GW extraction
91% of first pass

50% output coupler

76 GW extraction
96% of first pass

60% output coupler 65% output coupler

Pass 2 outPass 1 out

Pass 2 inPass 1 in

Pass 1000 out

Pass 1000 in



High duty cycle IFEL -> Recirculated Nocibur

• Objective: to demonstrate 
intracavity IFEL operation in a 
pulse train regime

• Phase I: System design (2015-6)
• Phase II: Proof of concept 

demonstration (2016-2017)

• E-beam dyamics in a pulse train 
mode

• CO2 recirculated system upgrade
• IFEL optimization and integration



Conclusion
• TESSA builds up on decade-long experience from IFEL/ 

tapered undulator
• High gradient IFEL coupling can achieve very high electrical-to-

optical energy conversion efficiencies. 
– Nocibur experiment recently demonstrated 30 % energy extraction

• Scaling of low gain and high gain TESSA demonstrates 
advantages of prebunched beam and large input seed powers. 
– Benefit to sideband instability

• TESSA roadmap well marked
– Short wavelength single pass
– TESSA in an oscillator configuration (TESSO) has potential for > 50% 

efficiency for high average power light source. 
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