Len_Y27dD

P.R. Pokkuluri, R. Raffen, F.J. Stevens, and M. Schiffer

Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 USA

Introduction

The mutation Y27dD in Len was found to be stabilizing by about 2.7 kcal/mole. This mutation also introduces a negatively charged residue close to the dimer interface. Thus, the structure is of interest from two perspectives: 1) to understand the structural basis for stability and 2) to see if this protein forms a flipped dimer.

Methods and Materials

Len_Y27dD was crystallized from 30% PEG 4K and 0.2 M ammonium sulfate. X-ray diffraction data were collected to a resolution of 1.3 Å at the Structural Biology Center's (SBC-CAT) beamline 19-ID at the Advanced Photon Source (APS).

Results

The crystal belonged to space group P6_1 2_2 with unit cell dimensions of a = b = 91.7 Å and c = 66.2 Å. Based on one monomer per asymmetric unit V_M = 3.2. The structure was solved by the molecular replacement method using the native Len structure [Protein Data Bank (PDB) code 1LVE] as the search model. After refinement with CNS and model rebuilding with CHAIN, the current R-factor is 29.5% and R-free is 32.8% for 8.0–1.6 Å data.

Len_Y27dD forms a conventional dimer like the native Len. In the crystal, the dimer's two-fold axis coincides with a crystallographic two-fold axis. The electron density for the monomer is of very good quality. However, the refinement appears to be stuck at high R-factors. Although the space group and structure seem to be correct, the high R-factors may be due to unidentified electron density present in a large channel along the six-fold axis created by crystal packing. This cavity is not large enough for another monomer (if two monomers are present then the V_M would be too low at 1.6). At this time it is not clear whether this density could represent frozen solvent (PEG and water) or something else. A similar channel was found in the native Len structure (PDB code 2LVE), which was refined at a relatively low resolution of 2.7 Å. In the case of Len, there was no electron density in the channel.

Acknowledgments

This work was supported by the U.S. Department of Energy, the Office of Biological and Environmental Research under contract No. W-31-109-Eng-98 and by the U.S. Public Health Service Grant DK43757. Use of the Argonne National Laboratory SBC-CAT beamline at the APS was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Energy Research, under contract No. W-31-109-Eng-38. We appreciate the help of the SBC-CAT staff with data collection.