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Figure 1. Schematic view of V2O3 structures: only V ions are shown
for the sake of clarity. Left: the hexagonal cell with the trigonal
(primitive) cell inside; right: relationship between corundum (room
temperature PM phase) and monoclinic (low temperature AFI phase)
unit cells. X-ray absorption measurements were performed aligning
the x-ray beam polarization along the three orthogonal directions of
the hexagonal lattice: the c axis and, perpendicular to it, the x and y
(corresponding to the monoclinic bm axis, see the text) directions
highlighted on the left.

though the AFI and PI phases were reported, respectively, as
monoclinic and trigonal by x-ray diffraction studies [7], in [23]
no evident differences were found for the local structure in
the two phases and both were fitted better by the monoclinic
structure than by the trigonal one. Even though we basically
agree with the analysis of [23], two key ingredients were still
missing in their treatment for a full characterization of the PI
phase, i.e. a full temperature dependence study of the signal,
and a comparative study of the behavior of first-and further-
nearest neighbors. In particular, since the measurements
of [23] in the PI phase were collected at a temperature
(180 K) only 15 K above the transition temperature of their
Al-doped compound (whereas those of [7] were performed at
room temperature), the authors may have missed the point,
suggested by RXS from [24], that the paramagnetic insulating
crystal structure changes with temperature even within the
PI phase. Other EXAFS measurements have been reported
in the literature for the stoichiometric compound [19]: we
shall comment on them in section 7, when we compare their
conclusions to ours in order to characterize the differences
between PI and PM phases.

3. Experimental set-up

In our experiment a 2.8% chromium-doped V2O3 single-
crystal (about 5 × 5 × 2 mm3) sample was used. It is
the same sample already used for the experiments performed
in [9, 24, 26, 27]. The material was grown in a skull
melter under a controlled atmosphere and slowly cooled.
The single crystals were then harvested and annealed. X-
ray absorption spectra at V K-edge (E0 = 5465 eV) were

Figure 2. Schematic view of the experimental set-up. Data were
collected with x-ray polarization (ϵ) in the hexagonal plane (ϵ ⊥ cH),
i.e. along x and y (top) and parallel to the hexagonal C axis cH
(bottom). The fluorescence emission was collected using two
photodiodes (P).

collected at the ID26 beamline of the European Synchrotron
Radiation Facility (ESRF) in the fluorescence mode. The x-ray
beam energies were selected using a double-crystal Si(220),
fixed-exit monochromator, providing an energy resolution of
∼0.3 eV at the V K-edge. Energy scans were done in
the so-called gap-scan mode, that is, tuning the maximum
of the undulator emission to the actual monochromator
rocking curve. Two mirrors provided an harmonic-free,
small (diameter ∼300 µm), intense x-ray spot size on the
sample, linearly polarized in the horizontal plane. The
fluorescence intensity emitted from the sample was collected in
the total-fluorescence mode by measuring the current from two
photodiodes (figure 2), mounted parallel to the polarization of
the incoming beam in order to minimize the elastic contribution
to the spectrum and the self-absorption effect [28].

The 2.8% chromium-doped V2O3 single crystal was
mounted in a closed-cycle He refrigerator for temperature
scans between 100 K and room temperature. The
sample temperature was continuously monitored using a K
thermocouple mounted near to the sample (∼5 mm). In order
to exploit the directional sensitivity of polarized EXAFS, the
absorption spectra were collected by correctly orienting the
single crystal with respect to the linear polarization of the x-
ray beam (figure 1).

Absorption spectra were collected in quick-EXAFS modes
(20 s per scan) in the energy range 5300–6300 eV (about 4000
points per scan). The geometric set-up and the high energy
resolution of the ID26 optic yielded very narrow Bragg peaks
(few energy points) in the spectra. In order to remove them,
for each temperature several (60–90) spectra were collected
at different angles by rocking the sample (±2◦) around the
vertical axis. With this procedure Bragg peaks were shifted
in energy along the spectra so that they could be easily singled
out and removed. We could in this way register many scans,
Bragg peak free, for each temperature point. The average of
all the scans provided exceptional quality, low noise, XAS
spectra suitable for accurate quantitative structural studies.
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