Colloidal Crystals Structure and Dynamics

Ivan Vartaniants

DESY, Hamburg, Germany National Research University, 'MEPhI', Moscow, Russia

Ivan Vartaniants | APS, Argonne, February 3, 2016 | **Page 1**

Coherent X-ray Scattering and Imaging Group at DESY

Present members:

- I. Besedin
- P. Skopintsev
- D. Dzhigaev
- I. Zaluzhnyy
- M. Rose
- O. Gorobtsov
- N. Mukharamova

Former members:

- A. Zozulya (now@PETRA III)
- A. Mancuso (now@XFEL)
- O. Yefanov (now@CFEL)
- R. Dronyak
- J. Gulden (now@FH-Stralsund)
- U. Lorenz (now@University of Potsdam)
- A. Singer (now@UCSD)
- R. Kurta (now@XFEL)
- A. Shabalin (now@CFEL)

High resolution microscopy

High resolution electron microscopy

Simulated HREM images for GaN[0001]

From: Wikipedia

Atomic structure of the Au68 gold nanoparticle determined by electron microscopy.

M. Azubel, et al., *Science* 345, 909 (2014)

From: Web Images From: Web Images

Atomic resolution imaging of graphene

A. Robertson and J. Warner, *Nanoscale*, (2013),**5**, 4079-4093

Can we develop x-ray microscope with atomic resolution?

It does not work with conventional approach due to the lack of atomic resolution X-ray optics

Can coherent x-ray diffraction imaging be the way to go?

What is Coherence?

Coherence is an ideal property of waves that enables stationary interference

Whether X-rays are coherent waves?

Max von Laue Nobel Prize in Physics, 1914 W. Friedrich, P. Knipping,

M. von Laue, Ann. Phys. (1913)

100 years later

LCLS

H. Chapman *et al.,* Nature (2011)

A. Mancuso *et al.,* New J. Physics (2010)

Coherence

LL=λ**2/(2**∆ λ**)**

 $L_T=(\lambda \mathbf{R}/2 \mathbf{D})$

Longitudinal Coherence Length

Transverse Coherence Length

Als-Nielsen & McMorrow (2001)

Coherence properties of 3rd generation synchrotron sources

I.A. Vartanyants & A. Singer "**Coherence Properties of Third-Generation Synchrotron Sources and Free-Electron Lasers"**, Chapter in: *Handbook on Synchrotron Radiation and Free-Electron Lasers*

Coherent volume (PETRA III, E=12 keV)

Coherent X-ray Diffraction Imaging Lensless X-ray Microscopy

Coherent X-ray Diffraction Imaging in forward direction

Mancuso *et al.* J. Biotechnol. **149** 229 (2010)

Small-angle scattering CDI Non-crystallographic samples **Uniform distribution of**

electron density

HELMHOLTZ ASSOCIATION

Kinematical approximation:

$$
A(q) = \int \rho(r)e^{-iq\cdot r} dr
$$

$$
q_z = 0
$$

$$
A(q_x, q_y) = \int \langle \rho(x, y, z) \rangle_z e^{-i(q_x x + q_y y)} dx dy
$$

$$
\langle \rho(x, y) \rangle_z = \int \rho(x, y, z) dz
$$

Inverse Fourier transform:

$$
\langle \rho(x,y) \rangle_z = \frac{1}{(2\pi)^2} \int A(q_x,q_y) e^{i(q_x x + q_y y)} dq_x dq_y
$$

Unfortunately, phases of $A(q_x, q_y)$ are not known!!!

Ivan Vartaniants | APS, Argonne, February 3, 2016 | **Page 15**

Phase retrieval

Iterative phase retrieval algorithm

Real space constraints: use all *a priori* knowledge:

•finite support •positivity

 \bullet . . .

Reciprocal space constraint: $|A_k(\mathbf{q})| \rightarrow \sqrt{I_{exp}(\mathbf{q})}$

R.W.Gerchberg & W.O. Saxton, *Optic* (1972) **35**, 237 J.R. Fienup, *Appl Opt.* (1982) **21**, 2758 V. Elser, *J. Opt. Soc. Am. A* (2003) **20**, 40

Example of reconstruction (o. Yefanov) 14

Bragg Coherent X-ray Diffraction Imaging (Bragg CXDI)

Coherent Scattering on Au Crystals

•4 micron Au nanocrystal •Coherent X-ray Diffraction •Measurement at APS sector 33-ID (UNICAT)

21 **I. Robinson, I. Vartanyants,** *et al.,* **PRL (2001), 87, 195505**

Sensitivity to strain

Bragg CDI

Kinematical approximation:

$$
A(\boldsymbol{q}) = \int \rho(\boldsymbol{r}) e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} \, \mathrm{d}\boldsymbol{r}
$$

$$
\rho(\mathbf{r})
$$
 – periodic electron density in crystal

Scattered amplitude near Bragg peak:

Shape function:

Phase, or projected strain field in crystal:

$$
A_h(\boldsymbol{Q}) = \frac{F_h}{v} \left(\mathbf{S}(\mathbf{r}) \right) e^{-i \boldsymbol{Q} \cdot \mathbf{r}} dr
$$

 F_h – structure factor

= q - h

$$
s(r) = \begin{cases} 1, & r \in \Omega \\ 0, & r \notin \Omega \end{cases}
$$

 $\varphi(r) = h \cdot u(r)$

Crystallographic samples,

uniform distribution of strain

I.A. Vartanyants & O.M. Yefanov, in the book: *X-ray Diffraction Modern Experimental* I.A. Vartanyants & I.K. Robinson, JPCM **13**, 10593 (2001); *Techniques.* (2015), pp. 341-384.

3D mapping of a deformation field inside a nanocrystal

Diffraction patterns from Pb nanocrystal measured around (111) Bragg peak

Strain field shown by color gradient **Resolution: 40**÷**50 nm**

M. Pfeifer, *et al.,* Nature, **442**, 63 (2006), R. Harder, *et al.,* PRB B **76**, 115425 (2007).

Coherent Diffractive Imaging

of the sample

Ivan Vartani **distribution in the sample**

Coherent imaging with atomic resolution

"Imaging of Nanocrystals with Atomic Resolution Using High-Energy Coherent X-J. Gulden, et al., **rays**'', *XRM-2010 Proceedings,* AIP Conf. Proc. **1365**, 42-45 (2011)

Theory

If several Bragg peaks are measured simultaneously:

$$
A(\boldsymbol{q}) = \int \rho(\boldsymbol{r}) e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} d\boldsymbol{r} = B(\boldsymbol{q}) \cdot F(\boldsymbol{q}) \cdot [\rho_{\infty}(\boldsymbol{q}) \otimes s(\boldsymbol{q})]
$$

Here: $B(q)$ – envelope function; $F(q)$ – structure factor of a unit cell; $s(q)$ – FT of the shape function

$$
\rho_{\infty}(q) = \frac{(2\pi)^3}{\nu} \sum_{h} \delta(q-h)
$$

Inverse Fourier transform of this relationship:

 $\rho(r) = [b(r) \otimes \rho_{uc}(r)] \otimes [\rho_{\infty}(r) \cdot s(r)]$

Here: $b(r)$ – FT of the envelope function $B(q)$; $\rho_{uc}(r)$ – electron density of a unit cell; $s(r)$ – shape function

$$
\rho_{\infty}(r) = \sum_{n} \delta(r - R_n);
$$

$$
R_n = n_1 a_1 + n_2 a_2 + n_3 a_3
$$

I.A. Vartanyants & O.M. Yefanov, in the book: *X-ray Diffraction Modern Experimental Techniques.* (2015), pp. 341-384.

Theory

This electron density is peaking at the regular positions of the unit cell due to the function $\rho_{\infty}(r)$ and has an overall shape of the sample *s(r)*.

Most importantly, it contains the position of the atoms in the unit cell due to the reconstruction of the electron density function of a unit cell $\rho_{\mu c}(r)$.

This means the following: If the continuous intensity distribution around several Bragg peaks will be measured simultaneously and phase retrieval methods will be applied to get the phase, then, in principle, the electron density with *atomic* resolution will be obtained.

I.A. Vartanyants & O.M. Yefanov, in the book: *X-ray Diffraction Modern Experimental Techniques.* (2015), pp. 341-384.

CXDI using high energy coherent X-rays

J. Gulden, et al.,

''**Imaging of Nanocrystals with Atomic Resolution Using High-Energy Coherent Xrays**'', *XRM-2010 Proceedings,* AIP Conf. Proc. **1365**, 42-45 (2011)

CXDI using high energy coherent X-rays

Pd nanocrystal 10 nm size

An excellent scientific goal for diffraction limited storage ring?

First realization of these ideas with photonic (colloidal) crystals

Photonic crystals

Photonic crystals in nature Artificial photonic crystals

Photonic band gap materials

Ivan Vartaniants | APS, Argonne, February 3, 2016 | **Page 33**

Colloidal crystals grown by self-organization

Ivan Vartaniants | APS, Argonne, February 3, 2016 | **Page 34**

Growth of the colloidal crystal film

Vertical deposition method

Oven-setup

Ivan Vartaniants | APS, Argonne, February 3, 2016 | **Page 35**

J-M. Meijer, et. al. Langmuir (**2012**), 28, 7631−7638.

Coherent x-ray imaging of defects in colloidal crystals

J. Gulden, *et al.,* Phys. Rev. B **81**, 224105 (2010)

European Synchrotron Radiation Facility ESRFF HELMHOLTZ **GEMEINSCHAFT**

Measurements at azimuthal angle φ = 0°

Experimental conditions (ID06, ESRF):

- **Energy: E=14 keV**
- **Pinhole size 6.9 μm**
- **Sample detector distance: 3.96 m**
- **Detector pixel size: 9 μm**

HOLTZ • **Detector size: 4005**×**2671 pixels ASSOCIATION**

J. Gulden, *et al.,* **Phys. Rev. B 81, 224105 (2010)**

Measurements at azimuthal angle φ = 0°

Diffraction pattern with the subtracted pinhole

Results of reconstruction from this diffraction pattern

Measurements at azimuthal angle φ = 35°

Experimental conditions (ID06, ESRF):

- **Energy: E=14 keV**
- **Pinhole size 6.9 μm**
- **Sample detector distance: 3.96 m**
- **Detector pixel size: 9 μm** HELMHOLTZ
	- **ASSOCIATION** • **Detector size: 4005**×**2671 pixels**

Measurements at azimuthal angle φ = 35°

Ivan Variant x-rays Properties For the first time and reconstruction from For the first time \mathbf{F} the subtracted pine and subtracted pine and substantial entity of \mathbf{c} \mathbf{t} \mathbf{S} is a stacking fault defect in a stacking fault defect in a stacking fault of \mathbf{S} **was directly imaged using**

Extension to 3D

Crystallography with coherent X-rays

A. Shabalin, *et al.,* (2015) (in preparation) J. Gulden, *et al.,* Optics Express, **20**(4) 4039 (2012)

PETRA III

Structural evolution of colloidal crystal films in the vicinity of the melting transition

Tuning of properties by external fields

Pumping energy

Strain field engineering

Y. Y. Hui et al., ACS Nano 7 (8), 7126 (2013)

Incremental heating

Ivan Vartaniants | APS, **Argonne, February 3, 2016 | Page 45**

<http://www.st-andrews.ac.uk/microphotonics/Gallery.php>

<http://www.amolf.nl/research/nanooptics/news/detailpage/artikel/pumped-photonic-crystal-accelerates-slow-light/>

MAY 19, 2015 VOLUME 31, NUMBER 19 pubs.acs.org/Langmuir

Schematics of the In Situ High-Resolution X-ray Scattering Setup at the P10 Coherence Beamline of the PETRA III Light Source (see p. 5A)

ACS Publications Most Trusted. Most Cited. Most Read

 \bullet

Ivan Vartaniants | APS, Argonne, February 3, 2016 | **Page 46** E. Sulyanova *et al.,* Langmuir **31**(19), 5274 (2015).

www.acs.org

Experimental setup. P10 beamline, PETRA III

Ivan Vartaniants | APS, Argonne, February 3, 2016 | **Page 47**

X-ray diffraction patterns measured *in situ* **during incremental heating**

Experiment A 15 keV, 50 x 50 µ**m unfocused beam**

Experiment B 8 keV, 3.5 x 2.8 µ**m focused coherent beam**

Ivan Vartaniants | APS, Argonne, February 3, 2016 | **Page 48**

X-ray diffraction pattern of the experiment A measured at room temperature

X-ray diffraction pattern of the experiment A measured at room temperature.

Same pattern with SAXS contribution subtracted.

Enlarged area of (b) showing Bragg peak indexing.

Temperature evolution of the Bragg peaks parameters experiment A

Temperature evolution of the Bragg peaks parameters experiment A

Nano Mesoscopic scale - scale

Polysterene particle diameter *D* and average lattice parameter

 $\langle a_{[110]} \rangle$

Lattice distortion parameter g_a and domain misorientation parameter *g^φ*

The model of colloidal crystal melting process

Nano- scale

Mesoscopic scale

Ivan Vartaniants | APS, Argonne, February 3, 2016 | **Page 53**

The model of colloidal crystal melting process

Nano- scale

Mesoscopic scale

Ivan Vartaniants | APS, Argonne, February 3, 2016 | **Page 54**

Free-electron lasers

We are living in exciting time !

FLASH at DESY 2005

LCLS at Stanford 2009

Sometime Nobel prize in physics?

SACLA at Spring8 2011

Ivan Vartaniants | APS, Argonne, February 3, 2016 | **Page 56**

European XFEL under construction (2016-2017)

European XFEL

ENFMC 2012, Águas de Lindóia, 17.05.2012 Massimo Altarelli, European XFEL GmbH, Hamburg

Study of dynamics in colloidal crystals

Observation and tuning of hypersonic bandgaps in colloidal crystals

- Polysterene spheres in air, glycerol, PDMS and silicon oil
- $> D = 256$ nm, 307 nm
- Brillouin spectroscopy
- > No sintering

Supported opal and scattering geometry

W. Cheng *et al.*, Nature Materials (2006)

Pump-probe experiment on colloidal crystals at FLASH

Pump probe experiment on colloidal crystal film at FLASH

> **Study of colloidal crystal in the temporal domain**

- \checkmark Elastic vibration of the spheres (Lamb modes)
- \checkmark Collective vibrations (phonons)
- \checkmark Order-disorder transitions

Pump-probe experiment:

- > Pump: 800 nm IR laser
- > Probe: 8 nm FEL radiation
- > Time delay from -100 ps up to 1000 ps, with 50 ps steps

R.Dronyak et. al., Phys Rev B 86 (2012)

Pump-Probe Experiment on Colloidal Crystal Film at FLASH

Single-shot diffraction patterns at different time delay

The momentum transfer vector **Q** and the horizontal W_x and vertical W_v size of the peaks were analyzed

R.Dronyak et. al., Phys Rev B 86 (2012)

Pump-Probe Experiment on Colloidal Crystal Film at FLASH

Time dependence and power spectrum of |**Q**| for the selected 2/3(422) and 220 Bragg peaks

Theoretical calculations of vibrations of a 400 nm isotropic elastic sphere based on the Lamb theory reveal a 5.07 GHz eigenfrequency of the ground (breathing) mode

Pump-probe experiment on colloidal crystals at LCLS

600m et accelerator e' Beam Transport: 227m above ground facility to transport electron beam (SLAC)

(SLAC)

Undulator Hall:170m tunnel housing undulators (ANL)

Electron Beam Dump 40m facility to separate eand x-ray beams (SLAC)

Front End Enclosure: 40m facility for photon beam diagnostics (LLNL)

Near Experimental Hall: 3 experimental hutches. prep areas, and shops (SLAC/LLNL)

X-Ray Transport & Diagnostic Tunnel 210m tunnel to transport photon beams (LLNL)

Far Experimental Hall 46' cavern with 3 experimental hutches and prep areas (SLAC/LLNL)

Experimental setup@XPP

Experimental setup@XPP

CSPAD detector

Experimental setup@XPP

Parameters of X-ray and IR laser beams

1. X-ray beam

- $E=8$ keV
- Pulse duration: ≤ 50 fs
- Flux $_{\sf sample}$ ~10⁹ ph/pulse
- Focus \sim 50 µm
- Energy bandwidth $~10^{-4}$

2. Laser beam

- $\lambda_{\text{las}} = 800 \text{ nm}$
- Pulse duration: ≤ 50 fs
- \bullet E ~ 2 mJ
- Power: $P \sim 4*10^{10}$ W
- Focus \sim 100 µm

Pump-Probe experiment on colloidal crystals

Pump-Probe on Colloidal Crystals

an 240.63 Std 98.28 Var/Mean 40.14 (0,0) W 1388 H 1038 t# 1/1 Color scale [0,741] Zoom 3.138 143 1:(454,497): 345 2:(1334,863): 130 3:(1375,70): 239 4:(916,483): 666

Damage produced by laser power 7° wave plate angle (~50
Study of ultrafast melting of colloidal crystals

Decay of integrated intensity of the peaks

Diffraction pattern

Decay of integrated intensity

τ - time delay between laser and X-ray pulses

$$
\frac{\Delta I(\tau)}{\langle I \rangle} = A \cdot exp\left(-\frac{\tau}{\tau_0}\right) - A
$$

Fit of integrated intensity decay with exponential function

Time delays from -10 ps to +1000 ps $\Delta \tau = 25.25$ ps

Time delays from -10 ps to +250 ps $\Delta \tau = 6.5$ ps

Ivan Vartaniants | APS, Argonne, February 3, 2016 | **Page 75**

Bragg peak's broadening in q-direction

Bragg peak's broadening in *q***-direction**

1. Energy transfer from IR laser to colloidal crystal?

2. Response of colloidal crystal lattice?

- **a. Decay of Bragg peaks integrated intensity**
- **b. Growth of Bragg peaks FWHM**

Model of ultrafast melting of colloidal crystal

Energy transfer from IR laser to colloidal crystal

- **IR wavelength: 800 nm**
- **Energy: 1.5 eV**
- **Energy of chemical bonds: (C-C, C-H) ~3-4 eV**
- **Absorption coefficient of 800 nm radiation in polystyrene: 10-4**
- **Temperature raise: one-two degrees**

Response of colloidal crystal lattice

Colloidal crystal is heated above Tg in 50 fs

Soft PS spheres

Response of colloidal crystal lattice

Colloidal crystal is heated above Tg in 50 fs

In ≤50 ps a sintering of PS spheres is going

Soft PS spheres

PS spheres $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ **Sintering of**

Response of colloidal crystal lattice

Colloidal crystal is heated above T_g **in 50 fs**

In ≤50 ps a sintering of PS spheres is going

In few 100 ps PS dynamics is damped (due to viscosity)

Soft PS spheres

Sintering of PS spheres

IVARIATION Liquid to solid

Variation of intensity and modulus of the scattering vector q as a function of packing density ρ

Model of ultrafast melting of colloidal crystal

This model explains decay of integrated intensity but does not explain the broadening of the Bragg peaks

Ivan Vartaniants | APS, Argonne, February 3, 2016 | **Page 84**

The broadening of Bragg peaks can be explained by including the imperfections of the colloidal crystal lattice in the model

Model of ultrafast melting of colloidal crystal

Work in progress …

DESY future projects for large scale facilities

FLASH2020

1111111

Courtesy to E. Weckert

PETRA IV: status and further development

Acknowledgements

• **DESY**

- **E. Weckert**
- **Former and present members of my group**
- **P10 beamline (M. Sprung, A. Zozulya)**
- **FLASH team**
- **University of Utrecht**
	- **A. Petukhov**
	- **J.-M. Meijer**
- **LCLS**
	- **XPP beamline**
- **Russia**

• **…**

- **Institute of Crystallography RAS**
- **RC "Kurchatov Institute"**
- **National Research Nuclear Centre, "MEPhI"**

We are looking for motivated PhD students and PostDocs

Thank you for your attention!

