ELLIPSE EQUATION

Model => Datum => Curve => curve from Equation

Enter the following in the upper half of the window below. This is the ellipse equation.
$a=E Q A$
$\mathrm{b}=\mathrm{EQB}$
$r=2$
$x=a^{*}\left(\cos \left(t^{*} 360\right)\right)^{\wedge}(2 / r)$
$y=b^{*}\left(\sin \left(t^{*} 360\right)\right)^{\wedge}(2 / r)$
$z=0$

From the lower window, Local Parameter. Change the Filter By to Current and all sublevels.

Add two additional parameters by clicking on the Green plus twice.

Name them EQA and EQB.

Select EQA and RMB Insert into Relations. Have the cursor in position to receive the parameter.

Repeat for EQB

OK

Create the model program
Tools => Model Intent => Program => Edit design => From Model => Yes

Select Edit Design

From Model

Yes.

Enter the lines under INPUT

MOD_A NUMBER
"ENTER ELLIPSE a VALUE"

MOD_B NUMBER
"ENTER ELLIPSE b VALUE"

```
# parabolic.pls - Notepad
File Edit Format view Help
VERSION 2.0
REVNUM 387
LISTING FOR PART PARABOLIC
INPUT
    MOD_A NUMBER
    "ENTER ELLIPSE a vALUE"
    MOD_B NUMBER
    "ENTER ELLIPSE b VALUE"
END INPUT
```

File => Save

Click on Done/Return

Tools => d=Relations

These are the important lines. They have the Feature FID_120, which tie the program to the equation.
Thanks Me Givens!
EQA:FID_120=MOD_A
EQB:FID_120=MOD_B
When selected and RMB Insert into Relations, the FID number is automatic found and written into the relations of both the program and the relations.

Program

To run the program

Enter CTRL G

Click on Enter, then check box MOD_A and MOD_B, and Done Sel

Enter the major a VALUE, the [20.000] is the current value. The value will be 0.000 for the first run.

This time I want a value of 30 .

ENTER ELLIPSE a VALUE [20.0000]
30

Click on the Green check box.
Enter the minor b VALUE, the [10.000] is the current value. The value will be 0.000 for the first run.

This time I want a value of 15

ENTER ELLIPSE b VALUE [10.0000]
15

Click on the Green check box.
The ellipse is created.

CTRL G to run the program to modify the a and b values.
The basic fundamentals of Parametric Part Programming will add diversity and opportunities to enhance your usage of the Creo software. This is the first of many geometric mathematical equations presentations to follow.

Thank you for your continued learning. Please contact me for any assistance.

Daniel Pasholk

