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Abstract

The polarization dependence of x-ray emission spectroscopy (XES) is studied on the
angle dependence of incident and emitted x-ray. The Kramers-Heisenberg formula
is employed to describe the optical process. It is shown that the quantum mechan-
ical interference effect is directly observable in magnetic circular dichroism (MCD)
spectra in a special geometrical configuration. It is also shown that by making use
of the linearly polarized x-ray, information on the symmetry of ground states of
materials is directly determinable from simple selection rules. Potential possibilities
of x-ray spectrum with a polarized photon are demonstrated.

Key words: polarized x-ray, x-ray emission spectroscopy, magnetic circular
dichroism

1 Introduction

The study of x-ray emission spectroscopy (XES) has made remarkable progress
in recent years with the use of high-brilliance synchrotron radiation sources.[1]
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There is a great advantage in the x-ray from synchrotron radiation sources,
because of its polarized nature. There has been a great progress in the study of
x-ray spectroscopy, especially in x-ray absorption spectroscopy (XAS), using
linearly and circularly polarized x-rays in the last decades.[2,3] It is expected
that there is potential possibilities in the study of XES with polarized x-ray.

In the interpretation of XES, the Kramers-Heisenberg formula,[4] which de-
scribes a coherent second order optical process, have been widely used. Al-
though it is widely admitted that the Kramers-Heisenberg formula successfully
reproduced the resonance feature of the XES, there were few investigation
aimed at the other important feature of the formula, the quantum mechani-
cal interference effect. It is interesting to evaluate the contribution from the
interference effect separately.

Recent experiments observed a non-vanishing magnetic circular dichroism
(MCD) signal with a geometry in which the direction of the incident x-ray
is perpendicular to the magnetic moment.[5–7] It is a bit surprising because
no MCD signal is expected for XAS with this geometry and the polarization
of the emitted x-ray is not resolved. This implies a need for a model beyond
a combination of two successive independent first order optical processes.[8]

In this paper the polarization dependence of XES is studied from the view
point of geometrical symmetry. We show that the MCD of XES in the above
case originates from interference term of coherent second-order process. We
also investigate the case where the incident x-ray is linearly polarized.

In the next section a formulation required for the calculation of XES is pre-
sented. In section 3, results for XES with polarized x-ray are given and dis-
cussed. A different theoretical approach is also presented to clarify the angle
dependence of MCD. In the final section we give concluding remarks.

2 Formulation

2.1 wave vector

We assume a photon as a plane wave of wave vector ~k and polarization vector
~e. It is convenient to use a photon energy ω = c|~k| and a polar angle (θ, φ)
of the direction of propagation to specify a photon. Here c is the velocity of
light. The direction of ~k is given, in the Cartesian coordinate, as

~k/|~k| = (sin θ cosϕ, sin θ sinϕ, cos θ), (1)
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which is in the tensor form,
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sin θeiϕ
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sin θe−iϕ

(2)

from the definition of tensor of rank 1,
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1 ≡ − 1√
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w
(1)
0 ≡ wz

w
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−1 ≡ 1√

2
(wx − iwy).

(3)

2.2 polarization vector

The polarization vector ~e is perpendicular to the wave vector ~k, i.e. ~e ⊥ ~k.
Thus there remain two independent directions in the polarization direction of
a photon.

We define a Cartesian coordinate system at the point of ~k with unit vectors
of,



























k̂r = sin θ cosϕ x̂ + sin θ sin ϕ ŷ + cos θ ẑ

k̂θ = cos θ cosϕ x̂ + cos θ sinϕ ŷ − sin θ ẑ

k̂ϕ = − sin ϕ x̂ + cosϕ ŷ.

(4)

Here k̂r is in the direction of ~k.

A circularly polarized photon is designated by helicity λ = ±1. The polariza-
tion vector of a circularly polarized photon is given in this coordinate as

~e(λ = ±1) = ∓ 1√
2
(0, 1,±i). (5)

A linearly polarized photon is designated by polarization angle θp. If we define
that the polarization angle is measured from the direction of k̂θ, the polariza-
tion vector is given as,

~e(θp) = (0, cos θp, sin θp). (6)
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Thus the tensor form of these polarization vectors in the original coordinate
is given as,


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e
(1)
1 = −1

2
(1 ∓ cos θ)eiϕ

e
(1)
0 = ± 1√

2
sin θ

e
(1)
−1 = −1

2
(1 ± cos θ)e−iϕ

(7)

for the circularly polarized photon of helicity λ = ±1 and

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



e
(1)
1 = − 1√

2
(cos θp cos θ + i sin θp)eiϕ

e
(1)
0 = − cos θp sin θ

e
(1)
−1 = 1√

2
(cos θp cos θ − i sin θp)e−iϕ

(8)

for the linearly polarized photon of polarization angle θp.

2.3 transition operator

The perturbation treatment is appropriate for the description of the inter-
action between electronic system and the x-ray from synchrotron radiation
sources. The perturbation operator for photo absorption transition is ex-
pressed in the non-relativistic limit,

T ∝ ~e · ~rei~k·~r ∼ ~e · ~r(1 + i~k · ~r + · · ·). (9)

This expansion is valid in the long wavelength limit. In this expansion, the
first term gives dipole transition operator and the second term quadrupole
transition operator.

We define the dipole transition operator for photon absorbing process as

T (1)
a ≡~e · ~r (10)

= r
1

∑

q=−1

(−)qe
(1)
−qC

(1)
q . (11)

The dipole transition operator for photon emitting process is given as Hermite
conjugate of T (1)

a .

T (1)
e ≡

(

T (1)
a

)†
(12)
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= r
1

∑

q=−1

(−)q ē
(1)
−qC

(1)
q , (13)

where ē is defined as,

ē(1)
q ≡ (−)qe

(1)
−q

∗
. (14)

The superscript symbols † and ∗ represent Hermite and complex conjugate,
respectively.

The quadrupole transition operator for absorption process is defined as,

T (2)
a ≡ (~e · ~r)(~k · ~r) (15)

= r2
2

∑

q=−2

(−)q

√

2

3
[ek]

(2)
−qC

(2)
q . (16)

Here the transformation from the first to the second line is given in the Ap-
pendix. The symbol [vw](k)

q represents tensor product and is defined as,

[vw](k)
q ≡

∑

q1+q2=q

v(k1)
q1

w(k2)
q2

〈k1k2q1q2|kq〉, (17)

where 〈k1k2q1q2|kq〉 is a Clebsch-Gordan symbol. The quadrupole transition
operator for emission process is also given as the Hermite conjugate of the
absorption operator.

2.4 spectral function

We adopt a quantum mechanically coherent second order optical model,i.e.
Kramers-Heisenberg formula, to describe the x-ray emission spectroscopy. The
spectral function of XES is given as

F (ω2, ω1) =
∑

f

∣

∣

∣

∣

∣

∑

i

〈f |T2|i〉〈i|T1|g〉
Ei − Eg − h̄ω1 − iΓi

∣

∣

∣

∣

∣

2

δ(Ef − Eg + h̄ω2 − h̄ω1), (18)

where |g〉,|i〉 and |f〉 are the ground, intermediate and final states with en-
ergies Eg, Em and Ef , respectively, Γi represents the finite life time effect
of the intermediate state, ω specifies photon energies, and the subscripts 1
and 2 discriminate incident and emitted process, respectively. The parameters
to specify photon besides the photon energy (θ, ϕ and λ or θp) is implicitly
included in T .
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In the case of XES, T1 is an absorption operator and T2 is an emission operator.
Because this formula is general expression for a coherent second order optical
process, it is applicable to other two photon processes such as a two photon
absorption (T1 and T2 are both absorption operators) or a two photon emission
process (T1 and T2 are both emission operators).

2.5 magnetic circular dichroism

The magnetic circular dichroism is defined as a difference between two spectra
for different photon helicities. We define MCD for XES (∆F ) as a difference
between two spectra of two different incident photons with helicities λ = −1
and λ = +1. Here we sum up on the helicities of the emitted photon. The
MCD of XES is then written as

∆F ≡ (F+1−1 + F−1−1) − (F+1+1 + F−1+1), (19)

where the helicities of photons are written down explicitly as F λ2λ1 . The in-
dices λ1 and λ2 specify the helicities for the incident and the emitted photon,
respectively.

From the theoretical point of view, there is no inevitable reason to sum up on
the emitted photon. It is possible to define MCD either on λ1 or λ2.

2.6 two geometrical configurations for the linearly polarized x-ray

When considering a linearly polarized x-rays in XES, there are two special
geometrical configurations, known as polarized geometry and depolarized ge-
ometry. Polarized configuration is defined as geometry where the polarization
vector of the incident x-ray is perpendicular to the scattering plane. Depo-
larized configuration is defined as geometry where the polarization vector of
the incident x-ray lies within the scattering plane. Here a scattering plane is
defined as a plane spanned by the wave vectors of the incident photon ~k1 and
the emitted photon ~k2.
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3 Results

3.1 MCD of XES

In this subsection we discuss the MCD of XES of the dipole transitions in
spherical symmetry under the condition that the magnetic moment lies in the
z-direction (the quantization axis). In this case the spectral function is written
as

F (ω2, ω1)=
∑

f

∑

∆Q

∣

∣

∣

∣

∣

∑

q1+q2=∆Q

(−)q1+q2e
(1)
−q2

e
(1)
−q1

f (1,1)
q2,q1

∣

∣

∣

∣

∣

2

×δ(Ef − Eg + h̄ω2 − h̄ω1), (20)

where the symbol f (l2,l1)
q2,q1

is defined as

f (l2,l1)
q2,q1

≡
∑

i

〈f |C(l2)
q2

|i〉〈i|C(l1)
q1

|g〉
Ei − Eg − h̄ω1 − iΓi

. (21)

The subscript index 1 and 2 designate the absorbing and the emitting process,
respectively.

Under the spherical symmetry the quantum mechanical interference may occur
within the states of the same ∆Q. The terms for each ∆Q are
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(1)
−1e

(1)
−1f

(1,1)
1,1 , (∆Q = 2)

−ē
(1)
−1e

(1)
0 f

(1,1)
1,0 − ē

(1)
0 e

(1)
−1f

(1,1)
0,1 , (∆Q = 1)

ē
(1)
−1e

(1)
1 f

(1,1)
1,−1 + ē

(1)
0 e

(1)
0 f

(1,1)
0,0 + ē

(1)
1 e

(1)
0 f

(1,1)
−1,1 , (∆Q = 0)

−ē
(1)
1 e

(1)
0 f

(1,1)
−1,0 − ē

(1)
0 e

(1)
1 f

(1,1)
0,−1 , (∆Q = −1)

ē
(1)
1 e

(1)
1 f

(1,1)
−1,−1, (∆Q = −2).

(22)

Inserting the explicit expressions into the polarization vectors ē and e after
Eq. (7) and making addition and subtraction after the definition Eq.(19), we
obtain a formula for MCD as

∆F =− cos θ1

{1

2
(1 + cos2 θ2)(|f11|2 + |f−11|2 − |f1−1|2 − |f−1−1|2)

+ sin2 θ2 (|f01|2 − |f0−1|2)
}

−1

4
sin θ1

{

sin 2θ2(f
∗
10f01 + f ∗

01f10 + f ∗
1−1f00 + f ∗

00f1−1
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−f∗
−10f0−1 − f ∗

0−1f−10 − f ∗
−11f00 − f ∗

00f−11)
}

, (23)

where the symbol fq2q1
is defined as

fq2q1
≡ e−iq2ϕ2e−iq1ϕ1f (1,1)

q2,q1
. (24)

The first term proportional to cos θ1 originates only from the diagonal term
and has the same incident angle dependence as the XAS. The second term
proportional to sin θ1 originates only from the off-diagonal interference term.
The first term meets with the intuitive two-step model and we can guess the
cos θ1 dependence originates from the exciting step, while the second term is
unexpected from intuitive model and purely a quantum mechanical effect.

If the incident photon is parallel to the magnetic moment (θ1 = 0), the in-
terference term vanishes, while if it is perpendicular to the magnetic moment
(θ1 = π/2), only the interference term remains. The non-vanishing MCD is
observed experimentally and the angle dependence both for the θ1 and θ2 is
also reproduced fairly well.[6,7] This is a direct justification of the use of the
Kramers-Heisenberg formula for XES.

3.2 fundamental spectrum

In the expression above on the MCD of XES (∆F ), the angle dependence
suggests some symmetry relations behind it. The dependence on the incident
angle θ1 corresponds to the p symmetry, while the dependence on the emitting
angle θ2 suggest the d symmetry.

In this subsection we derive the expression for MCD again with different view
point by means of fundamental spectrum proposed by Thole and van der
Laan.[9] We define a new tensor operator I l(k)

q as

I l(k)
q ≡

∑

q1,q2

(−)1−q1







l k l

−q1 q q2





 C(l)
q1

∗
C(l)

q2

/







l k l

−l 0 l





 , (25)

where the bracket represents 3j-symbol and C(l)
q renormalized spherical tensor.

We start from the special case where the incident and the emitted photon are
parallel to the z-axis. In this geometry, the MCD operator is written as

(

C
(1)
−1

)∗
C

(1)
−1 −

(

C
(1)
+1

)∗
C

(1)
+1 = −I

1(1)
0 , (26)
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where the normalized spherical tensors are supposed to be applied on the
appropriate states. The sum over the polarization of the emitting photon is
written as

(

C
(1)
−1

)∗
C

(1)
−1 +

(

C
(1)
+1

)∗
C

(1)
+1 =

1

3
(2I

1(0)
0 + I

1(2)
0 ). (27)

The operator for MCD of XES in this special geometry is written with these
relations as

∆F = −1

3
(2I

1(0)
0 + I

1(2)
0 )I

1(1)
0 . (28)

By making use of a property of the spherical harmonics

I
l(k)
0 =

∑

q

(−1)qC(k)
q I l(k)

q , (29)

the operator for the general direction is derived as

∆F =−1

3

(

2C
(0)
0 I

1(0)
0 + C

(2)
0 I

1(2)
0

)

C
(1)
0 I

1(1)
0

− 1

3

(

C
(2)
−1I

1(2)
−1 C

(1)
+1I

1(1)
+1 + C

(2)
+1I

1(2)
+1 C

(1)
−1I

1(1)
−1

)

. (30)

Inserting explicit expressions in this formula, we obtain

∆F =− cos θ1

{

1

2
(1 + cos2 θ2)(c

∗
1c1 + c∗−1c−1)(c

∗
1c1 − c∗−1c−1)

+ sin2 θ2c
∗
0c0(c

∗
1c1 − c∗−1c−1)

}

+
1

4
sin θ1 sin 2θ2

{

e−i(ϕ2−ϕ1)(c∗0c1 − c∗−1c0)(c
∗
0c−1 + c∗1c0)

−ei(ϕ2−ϕ1)(c∗0c−1 − c∗1c0)(c
∗
0c1 + c∗−1c0)

}

, (31)

where cq is an abbreviation of C(1)
q .

When this operator is applied to appropriate states, we reproduce the result
in the previous subsection as

∆F =− cos θ1

{

1

2
(1 + cos2 θ2)(|f11|2 + |f−11|2 − |f1−1|2 − |f−1−1|2)
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+ sin2 θ2(|f01|2 − |f0−1|2)
}

− 1

4
sin θ1 sin 2θ2

{

e−i(ϕ2−ϕ1)(f ∗
00f1−1 + f ∗

01f10 − f ∗
−10f0−1 − f ∗

−11f00)

−ei(ϕ2−ϕ1)(f ∗
00f−11 + f ∗

0−1f−10 − f ∗
10f01 − f ∗

1−1f00)
}

. (32)

From these expressions the origin of the symmetry of the angle dependence
is clearly understood. The p-symmetry of the incident angle θ1 is the direct
consequence of the MCD operator I1(1)

q . The angle dependence on the emitted
photon θ2 is a linear combination of the s and d symmetry for the diagonal
term while the angle dependence is only from the term I

11(2)
±2 and thus have

pure d-symmetry for the interference term.

3.3 MCD of quadrupole excitation

We apply the method in the previous subsection to the quadrupole excitation.
Here it is assumed that the excitation is expressed by quadrupole transition
operator, while the emitting process remains the same dipole transition.

The MCD operator for the quadrupole transition is derived as

(

C
(2)
−1

)∗
C

(2)
−1 −

(

C
(2)
+1

)∗
C

(2)
+1 = −2

5
(I

2(1)
0 − I

2(3)
0 ). (33)

The MCD operator for the z-direction is written as

∆F = − 2

15
(2I

1(0)
0 + I

1(2)
0 )(I

2(1)
0 − I

2(3)
0 ). (34)

The operator for arbitrary direction is

∆F =− 2

15

(

2C
(0)
0 I1(0) + C

1(2)
0 I

(2)
0

)(

C
(1)
0 I

2(1)
0 − C

(3)
0 I

2(3)
0

)

− 2

15

(

C
(2)
−1I

1(2)
−1 (C

(1)
1 I

2(1)
1 − C

(3)
1 I

2(3)
1 )

+C
(2)
1 I

1(2)
1 (C

(1)
−1I

2(1)
−1 − C

(3)
−1I

2(3)
−1 )

)

+
2

15

(

C
(2)
−2I

1(2)
−2 C

(3)
2 I

2(3)
2 + C

(2)
2 I

1(2)
2 C

(3)
−2I

2(3)
−2

)

. (35)

Inserting explicit expressions in this formula, we obtain
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∆F =
1

2

[

sin2 θ1

{

(1 + cos2 θ2)(|f1−2|2 + |f−1−2|2 − |f12|2 − |f−12|2)

+2 sin2 θ2(|f0−2|2 − |f02|2)
}

+ cos 2θ1

{

(1 + cos2 θ2)(|f1−1|2 + |f−1−1|2 − |f11|2 − |f−11|2)

+2 sin2 θ2(|f0−1|2 − |f01|2)
}

]

+
1

4
sin θ1

[√
3 cos2 θ1 sin 2θ2

{

e−i(ϕ2−ϕ1)(f ∗
01f10 + f ∗

00f1−1 − f ∗
−10f0−1 − f ∗

−11f00)

+ei(ϕ2−ϕ1)(f ∗
10f01 + f ∗

1−1f00 − f ∗
0−1f−10 − f ∗

00f−11)
}

−
√

1

2
(cos2 θ1 + cos 2θ1) sin 2θ2 ×

{

e−i(ϕ2−ϕ1)(f ∗
02f11 + f ∗

0−1f1−2 − f ∗
−12f01 − f ∗

−1−1f0−2)

+ei(ϕ2−ϕ1)(f ∗
11f02 + f ∗

1−2f0−1 − f ∗
01f−12 − f ∗

0−2f−1−1)
}

−
√

3

2
sin 2θ1 sin2 θ2

{

e−2i(ϕ2−ϕ1)(f ∗
−12f10 − f ∗

−10f1−2)

+e2i(ϕ2−ϕ1)(f ∗
10f−12 − f ∗

1−2f−10)
}

]

. (36)

This reproduces the result by Fukui et al.[7] The angle dependence is differ-
ent for each ∆Q and the origin of the symmetrical properties of the angle
dependence is clear.

3.4 depolarized configuration

In this subsection we discuss a special characteristic of the depolarized config-
uration for the linearly polarized x-ray.[13] We restrict ourselves to the case
where the z-axis, which is assumed as the direction of quantization, is in the
scattering plane. The polarization angle θp of the polarized configuration is
π/2 and that of the depolarized configuration is 0. The polarization vector is
written as



























e
(1)
1 = − 1√

2
cos θeiϕ

e
(1)
0 = − sin θ

e
(1)
−1 = 1√

2
cos θe−iϕ.

(37)

When this polarization vector is multiplied by a polarization vector of emitted
photon with an arbitrarily polarization angle, the term with the total magnetic
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momentum change of zero (q1 + q2 = 0) becomes

ē
(1)
−1e

(1)
1 + ē

(1)
0 e

(0)
1 + ē

(1)
−1e

(1)
1 = − cos θp

2 cos(θ2 − θ1). (38)

It is easily seen that this term will vanish regardless of the polarization angle
θp
2 if the scattering angle |θ2 − θ1| is equal to π/2.

From this finding it is concluded that with the depolarized configuration the
initial state |g〉 and the final state |f〉 cannot have an identical magnetic quan-
tum number under spherical symmetry. This implies that the elastic scatter-
ing is forbidden when the initial state is non-degenerate as in the case of
|J = 0, M = 0〉.

This characteristic of depolarized geometry is also applicable to lower symmet-
rical systems in somewhat restricted form. In the case of octahedral symmetry,
it is deduced that if the elastic line vanishes for the depolarized configuration
the initial state is either A1 or A2.[10–12]

4 Concluding remarks

In the present paper we gave a general expression for the MCD of RXES
for arbitrary directions of incident and emitted x-ray photons from geomet-
rical arguments. It was shown that the non-vanishing MCD originates from
the quantum mechanical interference effect, when the incident photon is per-
pendicular to the magnetic moment. The result was also derived using the
idea of fundamental spectrum. The angle dependence of MCD was directly
obtained from the symmetry of spherical tensors. The angle dependence of
the incident and the emitted photons in the present theory is observed in the
experiment.[6,7]

It is also shown that with the linearly polarized incident x-ray in the depolar-
ized configuration, the elastic scattering is forbidden when the ground state is
not degenerate from the symmetry selection rule. Using the selection rule of
XES with linearly polarized x-ray, it is possible to determine the symmetry of
the ground state and the excited states nearby from the angle dependence of
XES. This relations have been explored on the 4f rare-earth and 5f actinides
systems[13] and 3d transition metal systems as well.[10–12,14]

These facts directly justify the use of the Kramers-Heisenberg formula to de-
scribe the x-ray emission spectroscopy. The present result is general and appli-
cable to similar second-order optical processes such as two-photon absorption
and two-photon emission.[15] In the present paper some of the potential pos-
sibilities of x-ray spectroscopy using polarized x-ray are demonstrated.
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Appendix

The quadrupole transition operator can be expressed in the tensor form as,

(~e · ~r)(~k · ~r) = 3
[

[er](0)[kr](0)
](0)

0
. (A.1)

By recoupling the vectors,

[

[er](0)[kr](0)
](0)

0
=

∑

K

(2K + 1)



























1 1 0

1 1 0

K K 0



























[

[ek](K)[rr](K)
](0)

0
(A.2)

=
∑

K

√
2K + 1

3

[

[ek](K)[rr](K)
](0)

0
. (A.3)

The terms for K = 0 and K = 1 vanish by the conditions ~e · ~k = 0 and
~r × ~r = 0, respectively. Using the property of spherical tensor,

[

C(k1)
q1

C(k2)
q2

](K)

Q
= (−)K

√
2K + 1











k1 k2 K

0 0 0











C
(K)
Q , (A.4)

the expression [rr](2)
q is reduced to

[rr](2)
q =

√

2

3
r2C(2)

q . (A.5)

Hence the quadrupole operator is

(~e · ~r)(~k · ~r) =
√

5
[

[ek](2)

√

2

3
r2C(2)

](0)

0
(A.6)

= r2
∑

q

(−)q

√

2

3
[ek]

(2)
−qC

2
q . (A.7)
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