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Abstract

A two-dimensional, semi-infinite analytical solution of the transient temperature and the
thermal stress due to heating from the bending magnet beam missteering in the APS has been
developed. In order to solve the thermal stress analytically, an effective absorption function is
introduced, and the transient temperature can be written as a function of the exponential inte-
grals. At the origin where the peak power is applied, the effective stress is found to be the maxi-
mum and is undergoing simple compression along the longitudinal direction. The result utilizing
finite element method (FEM) applied to the chamber cross section is also presented and agrees
fairly well with the current analytical solution during the early small time scale.
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1 Introduction

APS (Advanced Photon Source) synchrotron beam orbit missteering is known to be an important
event due to the extreme thermal loading and subsequent high thermal stress built up in the
vacuum chamber. The information obtained during the transient activities directly affects the
design criterion for the beam abort and interlock systems. Because the bending magnet beam
missteering generates a very localized temperature gradient that will result in high thermal stress
in the chamber, thermomechanical analysis of the beam missteering is necessary to obtain the
parametric expressions for the temperature and stress in terms of the beam power and the
associated footprint.

Because the bending magnet radiation has a fan-like geometry in the horizontal direction
and a gaussian-like distribution in the vertical direction, the footprint heating on the chamber
surface spreads out in artensively wider area along the longitudinal direction than along the
transverse direction, hence, a two-dimensional analysis on the transverse plane is reasonably ad-
equate. Since the response time of the beam position monitor (BPM) is on the order of a few
milliseconds, the cooling effect due to remote water convection is limited. In addition, in view
of the localized power input, it is expected that severe thermal and thermomechanical activities
will take place in a small region; therefore, semi-infinite plane is used for the current analysis. A
nonhomogeneous energy equation is utilized for the transient temperature analysis. Inertia ef-
fects due to the heating are assumed to be negligible; hence, quasi-static thermoelastic plane
strain condition is employed. In our analysis, all the material properties are independent of tem-
perature and time.

2 Bending Magnet Power Distribution

The bending magnet power distributiqins expressed as [4]

5.425EBI 5.425EBI 1 5 Y232
a4 = 2 Firy) = 2 52[1+7 2]’

wherey is the vertical angle; = 1957E ande, b, i,andl denote positron beam energy,
magnetic field of the bending magnet, the beam current, and the distance from the source,
respectively. The angular functiéfyy) can be approximated as gaussian distribution [5]
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Fig. 1 shows the comparisons of/j using Eqgs. (1) and (2). Eg. (2) is recast as
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For convenience, coordinatas the vertical direction, anglis the horizontal direction. Also, in
Eq. (3) the approximatiop = x/l has been used. Note that the standard devigtmithe
bending magnet becomes
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Eq. (1) can be rewritten as
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If the bending magnet is vertically missteered, then Eq. (5) becomes
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whered is the incident angle angl, is the vertical angle. The peak poveggrand the
corresponding standard deviatigrare, respectively,
o = 5.425EBIsin § (o= 0.608I
° 12 » 79 1957 E sinyg’ (7)
If the beam is horizontally missteered, Eq. (5) yields
2
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3 The Temperature Field

As shown in Fig. 2, consider a two-dimensional semi-infinite plgmed( -0 <X < ) in

which the surfacg = 0 is assumed to be insulated. A gaussian-type of heat source is simulated
for the bending magnet where the peak power is located at the origin. The heat equation is given
as
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whereD is the diffusivity defined as and/pc, andK, p, andc denote conductivity, density, and
specific heat, respectively. The surface represents the inner surface of the storage ring chamber
and is assumed to be insulated. Thus, the boundary condition reads

T _ -
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From Eq. (2), the power distribution of the bending magnet is expressed as
2
N E)

When the bending magnet heats the chamber surface, the heat generation term in Eq. (10) is
rewritten as

(12)



2
Q = ad(y) = do exp (—% (%) )6(y),

(13)
whered(y) is the delta function defined as
1 when y= 0,
o(y) = {O elsewhere. (14)

Utilizing the green function solution [2], we found that the solution satisfies Eqgs. (10)
and (11), and, with the surface heating formulation (from Eq. (13)), reads
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whereT, is the reference temperature. After some algebra, Eq. (15) can be written as
t
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where
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Observing the solution in Eq. (16), we see that the coefficients associatedandiiin the

exponential function are different, which will result in complexity while determining the thermal
stress. Therefore, in order to be able to solve for the thermal stress, we assume that the material
along they axis is also subjected to the same distributed heat as is the material along the surface
(x axis), but arfeffective absorption coefficient?}; is introduced to accommodate the maximum
temperature (in Eq. (16¥)Therefore, the heat generation term is assumed to be

2 4 2
Q = ggay exp [—%(X :;y )]
0 (18)

1Although Choi [3] also assumed that the absorption function can be expressed
as an exponential function of the depth, the absorption function used here is a fictitious one and
requires further verifications.




ReplacingQ in Eg. (15) by the expression from Eq. (18), we found
t

_ o1 __1 v
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wherer2= x2 +y2 Further calculation yields
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whereE, representexponential integral of integer orderwhich is defined as [1]

(19)
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En(2) = Iwm} Re (2) > 0.
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It is easy to find that the maximum temperatures in both Egs. (16) and (20) are located at the
origin. Lettingx = 0 andy = 0 and carrying out the integration in Eq. (16), the maximum
temperature is found to be

2
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Similarly, the maximuntemperature in Eq. (20) is
r2
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D pc 2r2 23)
To make the maximum temperature in Eq. (23) identical to that in Eqog2)st satisfy
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4  The Stress Field

The thermal stress is divided into two parts: (1) the stress &ig)di(e to the temperature
change in the infinite plane, and (2) the extra stressﬁﬁ,l@enerated to satisfy the boundary
conditions. To solve the stresg we introduce a displacement potenfiahich satisfies
Poisson’s equation [6]

VO = @y = mo(T-To), (25)

where V2 is the Laplacian operator ang is defined as

oY 1Y for plane strain and,

1-v
m =
° 10‘1 for plane stress,
v (26)




wherea, Y, andv are the thermal expansion, Young's modulus, and Poisson’s ratio, respectively.
The corresponding stress componerjtscan be expressed as

o = 2u(<1>,ij - (I),kk)’ (27)

wherep represents the shear modulus. Since the temperature distribution in Eq. (20) is only
function ofr, substituting Eq. (20) into Eq. (25) and writing the Laplacian operator in polar
coordinates, we have
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Direct integrating yields
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whereg, is the integrating constant and can be determined as follows:rwheh E(r) has an
order ofO(0); hence, the order of the first two terms on the right hand side of Eq. Q@)1
Also, because the derivativ®/dr has the same order of displacements, it has to be finite+as
0, and the only possibility is when

Co = 4Dpc (30)

Further integrating in Eq. (29) yields
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whereEi(z) is the exponential integral function and can be written as
Ei(z) = vyo + log(-2) + nz—rr:l z <0,
n=1 ' (32)

whereagy, is Euler constant .5772156649.... For convenience, the integrating constant
¢ in Eq. (31) is assumed to be zero.

Substituting Eqg. (31) into Eq. (27) and utilizing the relation [1]
Enei@ = & (exd—2-2E,(2), n € N, (33)



we finally have
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Note that all the stress componesjsremain finite as ¥ 0. From Eq. (34), it is easy to find
that, on the surfacg= 0, the stress componesy, satisfies the traction-free boundary condition
but the stress normal to the surface is different from zero :

_ B MoQooild | 2r2 + 4Dt X2 _x2
Oyy (x,0) = —2u 4D pc [ X2 E2 2r2 + 4Dt + 25 2r2 + 4Dt B
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An extra stress fielﬁij is introduced in order to satisfy the traction free boundary condition on
the surface, that is,

N



Oxy = Oxy + Oxy = 0 ony=0. (36)

An Airy stress functiofV satisfying the biharmonic equation can be expressed as

p = J %(A + AyB) exp (\y) sin (\x)dh,
0 (37)

and the stress componengssatisfy

= _0W = _9W = _ ¥

XX—W, W T 2! ny—ax—ay,
(38)
where A and B are constants and are determined by substituting Eq. (38) into Eq. (36).
The result gives

[ee]

A=B A=2 J Oyy(E, 0) sin (AZ) dE,

0 (39)
Substituting Egs. (37) and (39) into Eq.(38) and after some rearrangements, we have

[e'e}

Oyx = J A(-1+ yA) exp (-hy) sin (Ax) dh = —I + I,

0

c?yy = —J A(1 + yA) exp (-Ay) sin (Ax) dr = =l — I,
0

Oxy = f Aexp(-yh) sin (x) dh = I,
0 (40)
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The integralg andll are to be solved by numerical integration. After the stressﬁ’ipld

completed, the total stress components are determined by summing up two stresg éiettls
0jj in Egs. (34) and (40), respectively. On the surfeed®, the only non-vanished in-plane
stress componeity is expressed as
Moot

pcx2

2 2
.| (2r2 + 4Dt) exp (——X ) — 212 exp (——X ) — 4Dt|.
[( ° ) 2r2 + 4Dt ° 2r2

5 Finite Element Analysis

oxx(X,0) = 2u

(42)

Fig. 3 shows the dimensioning plot of the storage ring chamber cross section in APS. The
storage ring is made 6063 - TSaluminum Several bending magnet beam missteering studies
have been analyzed by using finite element method. One of these was chosen for the
verification. In this missteering case, the bending magnet beam power is assumed heating the
edge of the positron chamber in the curved sections (S2 or S4) by bending magnet Ml or M2.
The chamber cross section is discretized by isoparametric quadrilateral element. The distance
from the source point is approximatél§ inches. As shown in Fig. 4, convection water cooling

is carried out by three water channels. The convection coeffltieit4 W/cm °C. Air cooling

is applied on the outer boundary, whereas the inner chamber surface is assumed to be insulated.
The reference temperature and the initial temperaturei€.34able 1 lists the parameters
employed in the model. The discretization is constructed by ALGOR code, whereas the
calculation is done by the ANSYS finite element package.



6 Results and Discussions

From Eq. (18) it is apparent that heat is generated inside the material, but if the maximum
temperature is adjusted by introducing an effective absorption coefficient, the temperature
difference between Eq. (16) and Eq. (20) alerg0 is expected to have a larger discrepancy.
Fig. 5 illustrates the temperature plot using heat generation formulation (Eg. (20), long dashed
lines) and surface heating formulation (Eq. (16), dashed lines). It is found that,tbefore
second, the maximum temperature difference between two formulations is less tan 10
which reveals that the use of the heat generation model is adequate for the current analysis.

Fig. 6 shows the temperature distributions along the heating surface at different time
frames. The heat-affected zone in the first two time s@p81 and 0.05econds) is limited to
within 0.1inch. The small standard deviatigysteepens the temperature gradients widhir2
inch. As time increases, the temperature increases monotonically.

It is interesting to note that from Eq. (42),ras 0, not onlyoyy andoyy, but alsaoyy va-

nishes. The reason being that, in Eq. (40) as@, the additional normal stress componegt
approacheséyy. Because the streE;;y andoyy tend to the same limit asand y approach zero
(Eq. (34)), the total stresgy = Oxx + Oxx = Oxy - Oyy I — 0 as 0. Therefore, high compres-
sive normal stress is observed away from the origin instead of at the origin where the maxi-
mum temperature is located. Fig. 8 shows the three-dimensional plot of the stress component
Oxx-

For plane strain conditions, the off-plane strain components vgnisi® (=X, y, 2,
and the stress component becomes

Ozz = V(GXX + 0yy> — (X,Y(T — To) (43)
As was described above, because the in-plane stress components are all rzerd®,dsom

Eq. (43), only the off-plane stresg, is different from zero and it yields

lim o, = —1lim aY (T = T,).
r—0 # r—0 ( 0) (44)

Therefore, we see that the stress field at the origin behaves as uniaxial compression. Itis also
worthwhile to mention that the principal planes are along#redy axis. The effective stress,
defined as

_ 3 ' ’
Oet. = /2 i ij> (45)

now is simply
' r—0

r— (46)
at the origin. Where'j is thedeviatoric stresslefined by

, 1
0y = Oij_§6ij0kk’ (47)

whered;; is theKronecker delta Due to the fact that the effective stress cannot be larger
thanaY(T-T) if the material is subjected to only thermal loading, we can conclude that the
maximum effective stress takes place at the origin and the magnitude is
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Fig. 7 shows the effective stregg profile along the heating surface. It is found that even
though the heat-affected zone at the early s@@®1 and 0.01 seconds)less tha.1inch

(Fig. 6), the area of the nonzero effective stress is much wider due to the thermal expansion of
the material. The heated material receives compressive stress while the adjacent unheated
material is subjected to tensile stress.

Fig. 9 illustrates the transient temperature at the origin using both the semi-infinite ana-
lytical solution and the finite element analysis. The two approaches agree fairly well with each
other beford = 0.016second. Although in the finite element model, water convection is sup-
plied on three channels and steady state will be reached later, the associated steady-state temper-
ature is found to be higher than that found by the semi-infinite model within a reasonable time
interval. The reason being that in the semi-infinite model, the material absorbs much more heat
thandoes finite material. Theoretically, even though the temperature of the semi-infinite model
will diverge as the heating time tends to infinite (Eq. 22, for example), the relation between the
heating time and the temperature are in log scale, whereas the temperature in the finite domain
with cooling boundary conditions is on the order of exftf) , (whereh is the associated eigen-
value depending on the boundary conditions), which indicates that the time derivative of the
temperature in the semi-infinite domain is much smaller than that in finite domain.

The comparison of the effective stregg. at the origin using the semi-infinite analytical
solution and the finite element analysis is shown in Fig. 10. It is found that by using the semi-in-
finite solution the effective stress is higher than that found using the finite element model. This
is because the bending magnet heating takes places near the wedge apex where it is less
constrained than on the semi-infinite half plane.



Table 1: Material Properties and Parameters

B 0.6 [T]
E 7.0 [GeV]
| 300 [MA]
K 167.4 [WInfK]
T 34 [C]
1.1 x 10 [Psi]
a 2.25 x 16° [cm/cnPK]
5 46 [MR]
Vo 0.5235 [R]
% 0.33
P 2.7 [g/cn?]
c 984 [JIKGC]
I 70.87 [inches]
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Semi-Infinite Plane Analysis (solid line).

Transient Temperature at the origin. Finite Element Analysis (solid circle) vs.

.024
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Figure 10  Quasi-Static Effective Stressc§. at the origin, Finite Element Analysis

(solid circle) vs. Semi-Infinite Plane Analysis (solid line).




