Submitting Data on a web page using a PERL script and the POST method.

Mohammad M. Jamal. (January 31st 2000)

This document addresses two questions :

1. How to submit data without giving the user direct access to the database ?

2. How do you pass “unlimited” data to the server for it to save it to the database ?

The answer to the first question is a PERL script and the answer to the second question is the POST method.

When a form is submitted the action should invoke a PERL script using the POST method. If a GET method is used, the data that is passed in contained in an environment variable called QUERY_STRING which has a limited buffer size. However, when a POST method is used the data is sent to the STDIN file which has virtually no limit.

Given that, the objective is to code a PERL script that reads from the standard input and passes what it reads to a database procedure. Another limitation to passing data to the database procedure would be how do we know how many variables are being passed and therefore how to code a procedure to accept an unknown number of parameters. The answer to that question is to use two arrays.

Typically when data is submitted via the GET or POST method, the data string that is passed looks like :

Key1=Val1&key2=val2$Key3=Val3&Key4=Val4

Our objective is to transform this string into something like :

A=Key1&B=Val1&A=Key2&B=Val2&A=Key3&B=Val3&A=Key4&B=Val4

This transformation can be done using some PERL scripting. The transformed string is passed to a database procedure that accepts only two PL/SQL array parameters, namely array A and B. Then inside the procedure A(1) will contain Key1, A(2) will contain Key2, B(1) will contain Val1, B(2) will contain Val2 so an and so forth. This solution is the answer to the second question.

Now the answer to the first question. How will the PERL script actually establish a connection the webserver, read from the STDIN and do the transformation of the data string as described above. The answer to these questions is attached in form of the PERL script that does all that. What follows is explanation of how the code works :

The script basically calls two sub routines namely, get_data and send_data.

Get_Data

This subroutine calls a pre-built function called ReadParse. This function resides in the cgi-lib.pl which is a library of useful CGI functions. In order to use this library a header needs to included at the very top of any PERL script, much like the include function in C programs.

Essentially what ReadParse does is read from the STDIN if POST is used, or from QUERY_STRING if GET is used and decodes the URL encoded data. For example, the URL encoded data string :

Key1=Val1&key2=val2$Key3=Val3&Key4=Val4

Will return a list called “input” with each key=value pair in each member of the list “input”. In addition, if the values contains any +’s (pluses) or other special characters, the ReadParse function will also convert them into their alphanumeric equivalents. Pluses for example will be converted to spaces.

Once, the data is read and put into a variable called $param in the get_data subroutine, the send_data subroutine is called.

Send_data

Send_data first calls the connect_to_webserver routine that opens a TCP connection to the webserver given a host, port and a URL. In the example they are ra, 7001 and /conf/owa/xsr0010.biocarsUploadAPS respectively.

Connect_to_Webserver

It opens a TCP connection, and if successful the handle to that connection is saved in a variable called “F”.

The transformation of the data string then begins :

It splits the decoded param string : Key1=Val1&key2=val2$Key3=Val3&Key4=Val4 into an array called “in”. Element 1 in the “in” array will contain Key1=Val1, element 2 will contain Key2=val2 etc.

Then, a for loop is executed that steps through the “in” array. This loop further splits each element in “in” into variable A and B. For example, on the first iteration A=Key1 B=Val1, on the second iteration A=Key2 B=Val2 etc. Once, the loop ends we will have a data string that looks like :

A=Key1&B=Val1 &A=Key2&B=Val2&A=Key3&B=Val3&A=Key4&B=Val4

The next step is actually POST’ing this data to the webserver connection that we have opened. This is accomplished via a list of print F statements. Via the print F statements the script actually sends a set of commands to the “F” handle (ie the webserver). The commands are fairly typical in that it says its going to do a POST method, the opened connection should be kept alive, the length of the content (i.e. data) is specified, the actual data string (above) is passed, and an authorization header is also passed containing the base64 encoded username/password string. In short, a sequence of header information is passed to the webserver.

At this point the database procedure is executed saving the data . The webserver then responds to the inquiry. The response from “F” is saved into a variable called “the_response”. The response from the webserver contains some header information followed by the body which contains whatever HTML based tagged output the procedure may generate. In the PERL script, the first while loop skips through the header and the second while loop loops through the body. Again, the second while loop looks for particular responses such as “Request Failed” or “Not Found” that indicate a failure to connect to the webserver.

Conclusion

This attached script contains some other pieces of code such as writing an error to the log file. That is not critical to the explanation. Some of the specific lines of PERL code are very cryptic and therefore hard to follow. So contact me if you need any help or call our resident PERL expert at TUSC. If you need a printout of the ReadParse routine, need specific examples of the call to the PERL script, the declaration of the database procedure, or with the authentication scheme then also contact me.

I would like to acknowledge the invaluable guidance Felix Lacap provided in my effort and would like to thank Mark Greenhalgh for his help in PERL scripting.

