[image: image1.png]

 Hytec Electronics Ltd

IOC9010/PS/1.1

	[image: image3.png]

	HYTEC ELECTRONICS Ltd

HEAD OFFICE: 5 CRADOCK ROAD, READING, BERKS. RG2 0JT, UK

Telephone: +44 (0) 118 9757770 Fax: +44 (0)118 9757566

E-mail: sales@hytec-electronics.co.uk

IOC Blade 9010
1U Rack Mounted Input Output Controller
6 Industry Pack and 1 PMC Carrier
User Manual
Document No: IOC9010/UM/1.1
Date: 01/04/2006
Author: DAN/PM
CONTENTS
41.
INTRODUCTION

52.
PRODUCT SPECIFICATIONS

63.
OPERATING MODES

74.
APPLICATION REGISTERS

7Carrier Board Config and Switches Register IMR IP Address 2
(Read Only)

8INTS LO. Register
Address 8 (Read Only)

8INTS HI Register
Address A (Read Only)

9IP CLOCK Register
Address 10 (Read/Write)

9FANS_1_2 Register
Address 12 (Read Only)

9FANS_3_4 Register
Address 14 (Read Only)

9FANS_5_6 Register
Address 16 (Read Only)

10FAN_CONT Register
Address 18 (Read/Write Only)

11TEMP_FLAG Register
Address 1A (Read Only)

11CONFIG_2 Register
Address 1C (Read Only)

135.
ID PROM

136.
I/O Connections

147.
Physical Hardware Configuration (Jumpers, Pots etc)

16APPENDIX A

16Idiots Guide to Installing Linux on the 9010 IOC Blade

17APPENDIX B

17Idiots Guide to Installing EPICS on the 9010 IOC Blade

18APPENDIX C

18Idiots Guide to Building an EPICS Example

18Quick EPICS Test

18Adding Device Support to an EPICS Example

19APPENDIX D

19Idiots Guide to Installing and Running Medm

20Installing the Hytec IOC Blade Linux Kernel 2.6 Driver

20Writing Your Own IPCard Drivers

20Introduction

22APPENDIX E

22EPICS Variables Pre-Installed on IOC Blade 9010 Demo

24APPENDIX F

24IOC Blade 9010 API Commands

35APPENDIX G

35IOC Blade 9010 HTML Web Interface

37APPENDIX H

37IOC Blade 9010 TCP/IP Interface

37Introduction

37Command Set

37Status

37Status Command

37Status Command Response

38Read Command

38Read Command

38Read Command Response

39Write Command

39Write Command

39Write Command Response

INTRODUCTION

The IOC Blade 9010 is a 1U, 19” Rack Mounted Input / Output controller, designed to carry up to 6 Single width Industry Packs (IP) and a single PMC card simultaneously.
The logic on the motherboard of the 9010 1U IOC consists of interfacing hardware for the PC104+ processor to the Industry Packs and to the PMC device. Additionally, support is provided for the front panel displays and switches.

[image: image2.jpg]| Ta

H PMC Card
g
PC104+
b ®

Figure 1: IOC Blade 9010 System Block Diagram

The interface is in the form of a PLX Technology PCI9030 bridge device and a Xilinx Spartan 2 logic chip. The ‘Local Bus’ side of the 9030 chip is a non-multiplexed microprocessor bus with 32 address lines, 16 data lines and control signals. The PCI clock from the 9030 is used by the Xilinx device for all timing and clock requirements.

The 9030 device requests resources from the PC104+ processor as follows:

An I/O area for access to the configuration registers (not used).

A MEMORY area for access to the configuration registers (not used).

An I/O area for access to the internal registers of the Xilinx (Carrier Board registers).

A MEMORY area for access to the Industry Packs.

This I/O area is 64 bytes wide, organised as 32 16-bit words, starting at offset zero as follows:

Offset

Name

Description

0

CSR-CB

Carrier board Control and Status Register.

2

CONFIG

Carrier Board Switches and settings.

4

DISP_CONT

Read/write access to the LCD display control register

6

DISP_DATA

Read/write access to the LCD display data register

8

INTS_LO

Read only access to the IP IRQ Status Register (12 bits)

A

INTS_HI

Read only access to the IP Error Status Register (7 bits)

C

MASK_LO

Read/write access to a mask register for IP IRQ sources

E

MASK_HI

Read/write access to a mask register for IP Error sources

10

IP_CLK

Read/write access the IP CLOCK SELECT register (6 bits)

12

FAN_1_2

Read only register showing the speeds of fans 1 & 2 in RPS.

14

FAN_3_4

Read only register showing the speeds of fans 3 & 4 in RPS.

16

FAN_5_6

Read only register showing the speeds of fans 5 & 6 in RPS.

18

FAN_CONT

Read/Write access to Control bits for each fan

1A

TEMP_FLAG

Read only access to temperature sensor output flags.

1C

CONFIG_2

Read only access to second 8-bit configuration switch pack.

1. PRODUCT SPECIFICATIONS

Size:

1U 19” Rack 400mm Deep Approx

Operating temp:

0 to 45 deg C ambient

Number of input/outputs:

6 SCSI Style Connectors providing connection to the IP Cards.
Power:

+100 to 240VAC at 47-63Hz 20W Maximum Unpopulated.
OPERATING MODES

There are several basic operating systems / software / protocols to access hardware input/output.modes that the 9010 IOC Blade will support…

Linux / EPICS

The Linux / EPICS version on booting up, will scan all the Industry Pack (IP) slots and using the ‘VITA4’ standard it will identify the cards fitted. From this scan it will set up a default start up script, which will configure the cards and set up a default EPICS database. This will allow EPICS users via straight CA (Channel Access), EDM, MEDM and other EPICS utilities to immediately access the IOC’s interfaces, without the need to configure. The user can modify the start up script via the HTML pages (see below) or directly on the Compact Flash, to more specifically configure any IP Card. The modified start up script will always take priority over the default start up script, unless there is a configuration error i.e. any IP Cards are absent or changed.

Linux / HTML

With the Linux version it is possible with a web browser, to simply enter the IP address and access a tabbed HTML page. There is a page for each Industry Pack slot together with a general configuration tab etc. The layout of the tabbed page is adjusted for each type of IP card. This will allow developers to easily configure IOCs from their default settings. Since HTML allows IP Cards’ inputs to be monitored and outputs modified, the HTML interface allows the IOC Blade to be easily used for remote testing with no client code at all.

Linux / TCP/IP

The Linux version will also support a specific TCP/IP Socket, which will accept a standard TCP/IP connection. Via this connection, simple commands (STATUS, CONFIGURE, READ, WRITE etc) will allow full access and control to the IOC Blades IP Cards. A document fully describing the protocol is available on the Hytec Electronics Ltd website. This will allow Visual Studio, Borland, Delphi, and LabView and any C++ developers to easily interface to the IOC, and produce their own control packages.

RTEMS / EPICS

The 9010 IOC Blade can be run in the same way that the more usual VxWorks IOC would be, i.e. it boots up, connects to a host and runs off a start up script. RTEMS versions of the drivers are available from the Hytec Electronics Ltd website.

Windows / OPC Server

The 9010 IOC Blade will also support OPC server running on the Windows CE operating system, and the Industry Pack (IP) cards will appear as OPC devices. Any industry SCADA systems or applications with OPC client integrated would be able to easily read/write data from/to the devices. This OPC server will be fully compliant with the most current version of the OPC specification. During the system boot, a start up program will scan the devices connected automatically and build up a basic configuration database. A configuration tool (Either a Windows application or via the web browser) will be provided should the user change the device settings or the Industry Pack (IP) cards.
2. APPLICATION REGISTERS

Carrier Board Control/Status Register
 CSR-CB Address 0

(Read/Write)
Address:
Base + 0x0
	D15
	D14
	D13
	D12
	D11
	D10
	D09
	D08
	D07
	D06
	D05
	D04
	D03
	D02
	D01
	D00

	0
	0
	0
	FCON
	0
	TP16
	TP15
	FAN_6
	FAN_5
	FAN_4
	FAN_3
	FAN_2
	FAN_1
	0
	TIMO
	PMC

PMC

a ‘1’ indicates a valid PMC card detected.
TIMO

a ‘1’ indicates the last attempted access to an IP card timed out.

FAN_1-6

a ‘1’ indicates detected fan rotation (see also fan control monitoring registers).

TP15-16

from on-board test points (with pull-ups) inverted, so normally ‘0’.

FCON
one writeable and readable bit to select the cooling fan control method. ‘0’ = local automatic control, ‘1’ = remote control through the register at offset 18 HEX.

Carrier Board Config and Switches Register IMR IP Address 2
(Read Only)
Address:

Base + 0x2
	D15
	D14
	D13
	D12
	D11
	D10
	D09
	D08
	D07
	D06
	D05
	D04
	D03
	D02
	D01
	D00

	SW1/7
	SW1/6
	SW1/5
	SW1/4
	SW1/3
	SW1/2
	SW1/1
	SW1/0
	SP_4
	SP_3
	SP_2
	SP_1
	RESET
	DOWN
	OK
	UP

UP

a ‘1’ indicates the UP Button on the Front Panel is pressed.
OK

a ‘1’ indicates the OK Button on the Front Panel is pressed.
DOWN

a ‘1’ indicates the DOWN Button on the Front Panel is pressed.
RESET

a ‘1’ indicates the recessed RESET Button on the Front Panel is pressed.
SP_1-4

 a ‘1’ indicates the on-board switch point is closed. (4 Spare / Extra Switch Points).
SW1/0-7

 a ‘1’ indicates the relevant switch from a 8-way switch pack is closed / ‘ON’.
DISP CONT/DATA. (Offsets 4, 6)

Registers for direct R/W access to the front panel LCD display. The Control register is at offset 4, and the Data register at offset 6.

INTS LO. Register
Address 8
(Read Only)
Address:

Base + 0x8

	D15
	D14
	D13
	D12
	D11
	D10
	D09
	D08
	D07
	D06
	D05
	D04
	D03
	D02
	D01
	D00

	X
	X
	X
	X
	INT REQ F1
	INT REQ F0
	INT REQ E1
	INT REQ E0
	INT REQ D1
	INT REQ D0
	INT REQ C1
	INT REQ C0
	INT REQ B1
	INT REQ B0
	INT REQ A1
	INT REQ A0

INT REQ A0

a ‘1’ indicates the Interrupt Source was Input 0 on Industry Pack A.
INT REQ A1

a ‘1’ indicates the Interrupt Source was Input 1 on Industry Pack A.
INT REQ B0

a ‘1’ indicates the Interrupt Source was Input 0 on Industry Pack B.
INT REQ B1

a ‘1’ indicates the Interrupt Source was Input 1 on Industry Pack B.
INT REQ C0

a ‘1’ indicates the Interrupt Source was Input 0 on Industry Pack C.
INT REQ C1

a ‘1’ indicates the Interrupt Source was Input 1 on Industry Pack C.
INT REQ D0

a ‘1’ indicates the Interrupt Source was Input 0 on Industry Pack D.
INT REQ D1

a ‘1’ indicates the Interrupt Source was Input 1 on Industry Pack D.
INT REQ E0

 a ‘1’ indicates the Interrupt Source was Input 0 on Industry Pack E.
INT REQ E1

 a ‘1’ indicates the Interrupt Source was Input 1 on Industry Pack E.
INT REQ F0

 a ‘1’ indicates the Interrupt Source was Input 0 on Industry Pack F.
INT REQ F1

 a ‘1’ indicates the Interrupt Source was Input 1 on Industry Pack F.
INTS HI Register
Address A
(Read Only)
Address:

Base + 0xA

	D15
	D14
	D13
	D12
	D11
	D10
	D09
	D08
	D07
	D06
	D05
	D04
	D03
	D02
	D01
	D00

	X
	X
	X
	X
	X
	X
	X
	TIMO
	X
	X
	ERR_ F
	ERR_E
	ERR_D
	ERR_C
	ERR_B
	ERR_A

ERR_A

a ‘1’ indicates the Interrupt Source was the Error Output From Industry Pack A.
ERR_B

a ‘1’ indicates the Interrupt Source was the Error Output From Industry Pack B.
ERR_C

a ‘1’ indicates the Interrupt Source was the Error Output From Industry Pack C.
ERR_D

a ‘1’ indicates the Interrupt Source was the Error Output From Industry Pack D.
ERR_E

a ‘1’ indicates the Interrupt Source was the Error Output From Industry Pack E.
ERR_F

a ‘1’ indicates the Interrupt Source was the Error Output From Industry Pack F.
TIMO

 a ‘1’ indicates the Interrupt Source was Timeout for accessing any Industry Pack.
MASK LO/HI (Offsets Ch, Eh)

Registers corresponding to Interrupt and Error flag bits in INTS LO & INTS HI above, to select which, if any, are permitted to produce a PC104+ processor interrupt. This interrupt is presented to the PC104+ card on PCI interrupt INTA#.

IP CLOCK Register
Address 10
(Read/Write)
Address:

Base + 0x10

	D15
	D14
	D13
	D12
	D11
	D10
	D09
	D08
	D07
	D06
	D05
	D04
	D03
	D02
	D01
	D00

	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	CKS_ F
	CKS_E
	CKS_D
	CKS_C
	CKS_B
	CKS_A

CKS_A

a ‘1’ sets the clock for Industry Pack A to 32MHz and ‘0’ sets it 8MHz.
CKS_B

a ‘1’ sets the clock for Industry Pack B to 32MHz and ‘0’ sets it 8MHz.
CKS_C

a ‘1’ sets the clock for Industry Pack C to 32MHz and ‘0’ sets it 8MHz.
CKS_D

a ‘1’ sets the clock for Industry Pack D to 32MHz and ‘0’ sets it 8MHz.
CKS_E

a ‘1’ sets the clock for Industry Pack E to 32MHz and ‘0’ sets it 8MHz.
CKS_F

a ‘1’ sets the clock for Industry Pack F to 32MHz and ‘0’ sets it 8MHz.
All bits default to ‘0’ (i.e. 8Mhz) on power-up.

FANS_1_2 Register
Address 12
(Read Only)
Address:

Base + 0x12

	D15
	D14
	D13
	D12
	D11
	D10
	D09
	D08
	D07
	D06
	D05
	D04
	D03
	D02
	D01
	D00

	F2_7
	F2_6
	F2_5
	F2_4
	F2_3
	F2_2
	F2_1
	F2_0
	F1_7
	F1_6
	F1_5
	F1_4
	F1_3
	F1_2
	F1_1
	F1_0

F1_0-7

 These 8 bits form a value which is Fan 1’s Speed in Revolutions per Second.
F2_0-7

 These 8 bits form a value which is Fan 2’s Speed in Revolutions per Second.
FANS_3_4 Register
Address 14
(Read Only)
Address:

Base + 0x14

	D15
	D14
	D13
	D12
	D11
	D10
	D09
	D08
	D07
	D06
	D05
	D04
	D03
	D02
	D01
	D00

	F4_7
	F4_6
	F4_5
	F4_4
	F4_3
	F4_2
	F4_1
	F4_0
	F3_7
	F3_6
	F3_5
	F3_4
	F3_3
	F3_2
	F3_1
	F3_0

F3_0-7

 These 8 bits form a value which is Fan 3’s Speed in Revolutions per Second.
F4_0-7

 These 8 bits form a value which is Fan 4’s Speed in Revolutions per Second.
FANS_5_6 Register
Address 16
(Read Only)
Address:

Base + 0x16

	D15
	D14
	D13
	D12
	D11
	D10
	D09
	D08
	D07
	D06
	D05
	D04
	D03
	D02
	D01
	D00

	F6_7
	F6_6
	F6_5
	F6_4
	F6_3
	F6_2
	F6_1
	F6_0
	F5_7
	F5_6
	F5_5
	F5_4
	F5_3
	F5_2
	F5_1
	F5_0

F5_0-7

 These 8 bits form a value which is Fan 5’s Speed in Revolutions per Second.
F6_0-7

 These 8 bits form a value which is Fan 6’s Speed in Revolutions per Second.
FAN_CONT Register
Address 18
(Read/Write Only)
Address:

Base + 0x18
	D15
	D14
	D13
	D12
	D11
	D10
	D09
	D08
	D07
	D06
	D05
	D04
	D03
	D02
	D01
	D00

	x
	x
	x
	x
	x
	x
	F5_A
	F5_B
	F4_A
	F4_B
	F3_A
	F3_B
	F2_A
	F2_B
	F1_A
	F1_B

F1_A

Writing a ‘1’ sets Fan 1 to Low Speed.

F1_B

Writing a ‘1’ sets Fan 1 to High Speed.
F2_A

Writing a ‘1’ sets Fan 2 to Low Speed.

F2_B

Writing a ‘1’ sets Fan 2 to High Speed.
F3_A

Writing a ‘1’ sets Fan 3 to Low Speed.

F3_B

Writing a ‘1’ sets Fan 3 to High Speed.
F4_A

Writing a ‘1’ sets Fan 4 to Low Speed.

F4_B

Writing a ‘1’ sets Fan 4 to High Speed.
F5_A

Writing a ‘1’ sets Fan 5 to Low Speed.

F5_B

Writing a ‘1’ sets Fan 5 to High Speed.
Cooling Fan Control and Status Register. The unit has five cooling fans which can be controlled to be either off, half speed or full speed. This register has ten active bits, two for each fan. The ‘A’ bit controls the low speed option: ‘0’ = OFF; ‘1’ = ON. The ‘B’ bit controls the high speed option: ‘0’ = OFF; ‘1’ = ON. Note that when the high speed bit is set for a fan, the low speed bit becomes ‘don’t care’. Thus bit 4, F3_B controls the high speed option of fan number 3. This register is controlled by the FAN MODE bit of the CSR_CB; when this bit is zero, fan control is automatic, based on the signals from the temperature sensors, and reading this register will show how the fans are being operated. Writing to this register in this mode has no effect. When the FAN MODE bit in CSR_CB is written as ‘1’, this register is used to control the fans and will read back what is written. However, when in this mode, if any of the temperature sensors indicates that the unit is overheating, remote mode is overridden and local automatic control resumes.
TEMP_FLAG Register
Address 1A
(Read Only)
Address:

Base + 0x1A

	D15
	D14
	D13
	D12
	D11
	D10
	D09
	D08
	D07
	D06
	D05
	D04
	D03
	D02
	D01
	D00

	x
	TE_HI
	TE_MD
	TE_LO
	TD_HI
	TD_MD
	TD_LO
	TC_HI
	TC_MD
	TC_LO
	TB_HI
	TB_MD
	TB_LO
	TA_HI
	TA_MD
	TA_LO

TA_LO

a ‘1’ indicates Temperature Sensor A is above low temp setting (e.g. 20ºC).
TA_MD

a ‘1’ indicates Temperature Sensor A is above medium temp setting (e.g. 30ºC).
TA_HI

a ‘1’ indicates Temperature Sensor A is above high temp setting (e.g. 40ºC).
TB_LO

a ‘1’ indicates Temperature Sensor B is above low temp setting (e.g. 20ºC).
TB_MD

a ‘1’ indicates Temperature Sensor B is above medium temp setting (e.g. 30ºC).
TB_HI

 a ‘1’ indicates Temperature Sensor B is above high temp setting (e.g. 40ºC).
TC_LO

a ‘1’ indicates Temperature Sensor C is above low temp setting (e.g. 20ºC).
TC_MD

a ‘1’ indicates Temperature Sensor C is above medium temp setting (e.g. 30ºC).
TC_HI

 a ‘1’ indicates Temperature Sensor C is above high temp setting (e.g. 40ºC).
TD_LO

a ‘1’ indicates Temperature Sensor D is above low temp setting (e.g. 20ºC).
TD_MD

a ‘1’ indicates Temperature Sensor D is above medium temp setting (e.g. 30ºC).
TD_HI

a ‘1’ indicates Temperature Sensor D is above high temp setting (e.g. 40ºC).
TE_LO

a ‘1’ indicates Temperature Sensor E is above low temp setting (e.g. 20ºC).
TE_MD

a ‘1’ indicates Temperature Sensor E is above medium temp setting (e.g. 30ºC).
TE_HI

 a ‘1’ indicates Temperature Sensor E is above high temp setting (e.g. 40ºC).
This register shows the state of the temperature sensors in the unit. Each of the five sensors has three output flags for low, middle and high alarm states. The sensors are referred to as TA-TE and the flags as LO (low) MD (mid) and HI (high).
In automatic mode (see Fan Control register above) the LO bit of each of these sensors is used to turn the associated fan on in low speed mode. The MD bit controls the high speed mode of that fan and any of the HI bits appearing will cause all five fans to go into high speed mode.

CONFIG_2 Register
Address 1C
(Read Only)
Address:

Base + 0x1C
	D15
	D14
	D13
	D12
	D11
	D10
	D09
	D08
	D07
	D06
	D05
	D04
	D03
	D02
	D01
	D00

	x
	x
	x
	x
	x
	x
	x
	x
	SW2/7
	SW2/6
	SW2/5
	SW2/4
	SW2/3
	SW2/2
	SW2/1
	SW2/0

SW2/0-7

 a ‘1’ indicates the relevant switch from a 8-way switch pack is closed / ‘ON’.
Note: all unused bits in read only registers are always read as zero.

Unused bits in read/write registers read back as they were written but have no effect.

INDUSTRY PACK MEMORY AREA.

This area is 16 Mbytes wide, organised as 16-bit words. All accesses to Industry Pack resources are through this area, organised as follows:
	Offset
	Contents

	0000000h-01FFFFEh
	Memory area of Industry Pack A, 2Mbytes.

	0200000h-03FFFFEh
	Memory area of Industry Pack B, 2Mbytes.

	0400000h-05FFFFEh
	Memory area of Industry Pack C, 2Mbytes.

	0600000h-07FFFFEh
	Memory area of Industry Pack D, 2Mbytes.

	0800000h-09FFFFEh

	Memory area of Industry Pack E, 2Mbytes.

	0A00000h-0BFFFFEh
	Memory area of Industry Pack F, 2Mbytes.

	0C00000h-0DFFFFEh
	Not used (spare).

	0E00000h-0E00FFEh

	Access to Industry Packs A-F I/O, ID and INT areas.

This last area is sub-divided as follows:

	Offset
	Contents

	000h-07Eh
	Industry Pack A I/O registers (64 bytes).

	080h-0FEh
	Industry Pack A ID registers (64 bytes).

	100h-17Eh
	Industry Pack B I/O registers (64 bytes).

	180h-1FEh
	Industry Pack B ID registers (64 bytes).

	200h-27Eh
	Industry Pack C I/O registers (64 bytes).

	280h-2FEh
	Industry Pack C ID registers (64 bytes).

	300h-37Eh
	Industry Pack D I/O registers (64 bytes).

	380h-3FEh
	Industry Pack D ID registers (64 bytes).

	400h-47Eh
	Industry Pack E I/O registers (64 bytes).

	480h-4FEh
	Industry Pack E ID registers (64 bytes).

	500h-57Eh
	Industry Pack F I/O registers (64 bytes).

	580h-5FEh
	Industry Pack F ID registers (64 bytes).

	600h-7FEh
	Not used

	800h-8FEh
	Industry Pack A INT registers (128 bytes, only 2 words used).

	900h-9FEh
	Industry Pack B INT registers (128 bytes, only 2 words used).

	A00h-AFEh
	Industry Pack C INT registers (128 bytes, only 2 words used).

	B00h-BFEh
	Industry Pack D INT registers (128 bytes, only 2 words used).

	C00h-CFEh

	Industry Pack E INT registers (128 bytes, only 2 words used).

	D00h-DFEh
	Industry Pack F INT registers (128 bytes, only 2 words used).

	E00h-FFEh
	Not used.

Note: for this last set of registers, an access at the base address requests the vector for IP Interrupt 0, and at base address plus two, the vector for Interrupt 1. All other addresses are not used.

3. ID PROM

Should the 9010 IOC Blade should have an ID PROM ?????

If so here’s the probable contents ????

The ID configuration information held in the PROM is as detailed below.

The byte addresses of the ID PROM are as below:-

Base+80

ASCII
‘VI’

5649h

Base+82

ASCII
‘TA’

5441h

Base+84

ASCII
‘4 ‘

3420h

Base+86

Hytec ID high byte
0080h

Base+88

Hytec ID low word

0300h

Base+8A

Model number

9010h

Base+8C Revision 2204h (This shows PCB Issue 2 and Xilinx at issue 4)
Base+8E

Reserved

0000h

Base+90

Driver ID

0000h

Base+92

Driver ID

0000h

Base+94

Flags

0002h

Base+96

No of bytes used

001Ah

Base+98

Not used

0000h

Base+9A

Serial Number

xxxxd

4. I/O Connections
	Pin
	Signal
	Pin
	Signal

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

5. Physical Hardware Configuration (Jumpers, Pots etc)
JUMPERS.

J1

Connects the strobe line from the Carrier Board to Industry Pack A Logic Connector pin 46.

J2

Connects the strobe line from the Carrier Board to Industry Pack B Logic Connector pin 46.

J3

Connects the strobe line from the Carrier Board to Industry Pack C Logic Connector pin 46.

J4

Connects the strobe line from the Carrier Board to Industry Pack D Logic Connector pin 46.

J5

Connects the strobe line from the Carrier Board to Industry Pack E Logic Connector pin 46.

J6

Connects the strobe line from the Carrier Board to Industry Pack F Logic Connector pin 46.

J7

Xlinx FPGA startup mode select Factory Set.

J8

Set temperature control mode – IN = lower thresholds.

J9

Xlinx FPGA startup mode select Factory Set.

J10 – J15
Select connection mode for Industry Pack A external Clock, Trigger etc signals – normally all IN.

J16 – J21
Select connection mode for Industry Pack A external Clock, Trigger etc signals – normally all IN.

J22 – J27
Select connection mode for Industry Pack A external Clock, Trigger etc signals – normally all IN.

J28 – J33
Select connection mode for Industry Pack A external Clock, Trigger etc signals – normally all IN.

J34 – J39
Select connection mode for Industry Pack A external Clock, Trigger etc signals – normally all IN.

J40 – J45
Select connection mode for Industry Pack A external Clock, Trigger etc signals – normally all IN.

J46

Connects the common strobe line to the rear panel LEMO (option).

J47

Rear panel LEMO input to PC104+ module RESET line.

J48

Wiring points for PC104+ module RESET line.

J49

Rear panel LEMO input to common strobe line.

Other Jumper Selections:

There is a set of three pins next to HP7 labelled ‘DCOK’, 11 and 22. This is factory set to DCOK-22.

SWITCHES.

SW1

8-way switch pack for ‘Configuration 1’ settings, labelled ‘8-15’.

SW2-5

Reserved for future use.

SW6

8-way switch pack for ‘Configuration 2’ settings, labelled ‘0-7’.

Note: Configuration 1 and 2 are used in software to provide mode or location settings for a system.

VARIABLE RESISTORS.

VR1

Sets the contrast for the front panel LCD display and is factory set.

VR2

Sets the threshold for the temperature sensors and is factory set.

VR3

Sets the voltage regulator for low fan speed and is factory set.

8. HYTEC TRANSITION BOARDS
	Pin
	Signal
	Pin
	Signal

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

APPENDIX A

Idiots Guide to Installing Linux on the 9010 IOC Blade
1. Install Linux, we usually use Scientific Linux 4, the base SL distribution of which is basically Enterprise Linux, recompiled from source. We have found particulary hassle free. For more information and copies of the operating system please go to https://www.scientificlinux.org/. Which ever version of Linux you want to use, it MUST have a 2.6 Kernel if you want to do any work with the Hytec IOC Blade 9010. As its PCI interface code is presently only supported with this Kernel.

2. Select Installation Language (e.g. English(English)).

3. Select Keyboard (e.g. United Kingdom).

4. Select Mouse (it will indicate what you are presently using, so normally just click on next).

5. Partition Disk (Automatic is OK in most cases). If you are installing onto some sort of restricted system, such as a Flash Disk on a PC104, you need…

· /boot – 76Mb on ext3 – Force to be Primary Partition.

· 250Mb on swap. Can be less but get it as close to this as possible.

· / - Rest of the Disk (i.e. Fill all available space).

6. (Linux Text install) Select use GRUB Boot Loader.

7. (Linux Text install) Enter Boot Loader special options, normally leaving blank is usually fine.

8. (Linux Text install) Enter Boot Loader Password, normally leaving blank is usually fine.

9. (Linux Text install) Add other operating system to Boot Loader if required.

10. (Linux Text install) Select installing Boot Loader on to Master Boot Record (MBR).

11. Network Configuration (Automatically by DHCP is OK in most cases).

12. Firewall Configuration, either have No Firewall or preferably Enable Firewall under ‘Other ports’ entry box list the EPICS ports i.e. ‘5064:tcp,5065:tcp,5064:udp,5065:udp’.

13. Add any language support required.

14. Select Time Zone.

15. Enter root password and confirm.

16. (Linux Text install) If you are installing onto some sort of restricted system, such as a Flash Disk on a PC104, you need to use ‘customize software selection’ and at least include (as a minimum for EPICS)…

· Development Tools.

· Kernel Development.

· Legacy Software Development.

17. Insert CD 2 to 4 as requested.

18. Graphical Interface Configuration (it will indicate what you are presently using, so normally just click on next).

19. Monitor Configuration (it will indicate what you are presently using, so normally just click on next).

20. Customize Graphics Configuration (it will indicate what you are presently using, so normally just click on next, restriction for PC104).

21. Agree to License.

22. Set Date and Time.

23. Add user.

24. Skip additional CD Installation.

APPENDIX B

Idiots Guide to Installing EPICS on the 9010 IOC Blade

All previously released versions of Base are now publicly available, including a nightly snapshot of the R3-14 branch of the EPICS CVS repository. To discover the size of the download files in advance, visit the Base Download area. The tar file linked below contains source code only (no binaries), and was compressed using gnuzip. baseR3.14.8.2.tar.gz

1. Gotohttp://www.aps.anl.gov/epics/base/R3-14/6.php
2. load ‘baseR3.14.8.2.tar.gz’ to /usr/local/EPICS. Make the directory if necessary(i.e. mkdir).

3. Unzip it (i.e. gunzip baseR3.14.8.2.tar.gz).

4. Expand it (i.e. tar xvf baseR3.14.8.2.tar).

5. Before you can build or use EPICS, you must set a couple of environment variables This can be done by either simply typing the two commands (i.e.

· export EPICS_HOST_ARCH=linux-x86
· export EPICS_BASE=/usr/local/EPICS/base-3.14.8.2)

or by modifying the bash shell. To edit the bash shell (Linux default shell), you need to edit the hidden file .bash_profile (can be seen with ls –al from /root) and modify to something like below . The important additions are highlighted….

.bash_profile

Get the aliases and functions

if [-f ~/.bashrc]; then

. ~/.bashrc

fi

User specific environment and startup programs

PATH=$PATH:$HOME/bin

BASH_ENV=$HOME/.bashrc

USERNAME="root"

EPICS_HOST_ARCH=linux-x86

EPICS_BASE=/usr/local/EPICS/base-3.14.8.2
export USERNAME BASH_ENV PATH EPICS_HOST_ARCH EPICS_BASE

6. Move to the build directory containing the EPICS make file (i.e cd /usr/local/EPICS/base-3.14.8.2).

7. make EPICS (i.e. make).

APPENDIX C

Idiots Guide to Building an EPICS Example

1. Make a directory under your root, suitably named for the example you wish to build (i.e. mkdir IOCBlade9010).

2. Change to this newly created directory (i.e. cd IOCBlade9010)..

3. Call a script to build an example, in the following command ‘-t example’ is telling it to build an example type script and IOC9010 is its name (i.e. /usr/local/EPICS/base-3.14.8.2/bin/linux-x86/makeBaseApp.pl -t example IOC9010)

4. Run a second script (i.e. /usr/local/EPICS/base-3.14.8.2/bin/linux-x86/makeBaseApp.pl -i -t example IOC9010).

5. make (i.e. make)

6. Under your example directory, the directory structure /iocBoot/’ioc + ‘Example Name’ will have been added. Change to this sub-directory (i.e. cd iocBoot/iocIOC9010).

7. This directory contains a script (st.cmd) this files need to be made executable (i.e. chmod 777 st.cmd).

8. run it (i.e. ./st.cmd).

9. Typing the command ‘dbl’ will list the

Quick EPICS Test

1. cd/usr/local/EPICS/base-3.14.8.2/bin/linux-x86
2. ./caRepeater&
3. ./caget IOC:aiChannel1
Adding Device Support to an EPICS Example

1. Copy the Device Support source file (c code file) to the source directory. The source (‘src’) directory is in the ‘App’ directory (which is named ‘Example Name’ + ‘App’) under the top example directory (i.e. in the above example it is /IOCBlade9010/IOC9010App/src).

2. Include the source file in the source directory’s makefile. The makefile is also in the source directory and needs a line added under the ‘# Add locally compiled object code’ heading (e.g. something like IOC9010_SRCS+=devHy8601.c).
3. Modify the build to include the EPICS records added by the new device support. Again in the source directory there is the file xxxSupport.dbd, you will need to add a line for each EPICS record to be supported (e.g. of the format device(ao,VME_IO,devAoHy8601,”Hy8601”)).
4. Change to the top level of the example directory (i.e. cd / IOCBlade9010).

5. re-make (i.e. make).
6. Assuming the source has been successfully built, you will need to add your db file. The db file is usually contained in the ‘db’ directory under the top example directory (i.e. in the above example it is /IOCBlade9010/db). Copy your db file into this directory.

7. The file (st.cmd) needs to call the newly included db file. Under your example directory, in the directory structure /iocBoot/’ioc + ‘Example Name’ you will find the st.cmd. Change to this sub-directory (e.g. in the above example cd iocBoot/iocIOC9010) and then add this db file (e.g. dbLoadRecords("db/Hy8601-ao.db","device=IPCard"))
8. You should now be able to re-run it (i.e. ./st.cmd) and access the new variables.

APPENDIX D

Idiots Guide to Installing and Running Medm

1. Go to web site http://www.aps.anl.gov/epics/download/extensions/index.php
2. Download the following three files and copy them into base directory /usr/local/EPICS/base-3.14.8.2
medm3_0_3.tar.gz
extensionsConfig_20040406.tar.gz
extensionsConfigure_20040406.tar.gz
3. Extract all three files from there. This will build the extension structures.

4. Find the file RELEASE in the…

/usr/local/EPICS/base-3.14.8.2/extensions/config directory and open it by using a text editor. Change the line EPICS_BASE= to the current base directory i.e.

EPICS_BASE=/usr/local/EPICS/base-3.14.8.2
And save it. Do the same change to the RELEASE file in the /usr/local/EPICS/base-3.14.8.2/extensions/configure directory and save it.

5. Go to medm subdirectory by typing:

 cd /usr/local/EPICS/base-3.14.8.2/extensions/src/medm

6. Build medm by doing a make, i.e. simply type…

Make
This will take possibly half an hour to build the medm depending on the speed of your machine.

7. Once the build is complete, to run medm simply change to directory….

 cd /usr/local/EPICS/base-3.14.8.2/extensions/src/medm/medm/0.linux-x86

8. Then Run it, i.e. simply type…

./medm

9. If you have an example to run, simply use the mouse to click on FILE -> OPEN and navigate for the example display file (*.adl is the normal extension).

10. To run it, click on the ‘Execute’ button.

Installing the Hytec IOC Blade Linux Kernel 2.6 Driver

1. As you are installing / running some kernel level code, you will find it it much easier to log on as root. Also this Driver is for a Linux Kernel 2.6 Version only (such as found with Scientific Linux 4.0).

2. Go to web site http://www.hytec-electronics.co.uk/xxxxxxx/
3. Download the file IOCBlade9010.tar.gzip and copy it into the root directory… /root
4. Extract it in this location.

5. This is an EPICS example application and also includes a copy of the Hytec IOC Blade Linux Kernel 2.6 Driver under the Directory… /root/IOCBlade9010/pci
6. To install the driver simply type.. /root/IOCBlade9010/pci/IOC9010_load
Writing Your Own IPCard Drivers

Introduction

The Directory /root/IOCBlade9010/pci contains the Hytec IOC Blade 9010 Linux Kernel Driver. This Directory includes the driver itself, load / unload scripts and a header file to allow you to access the IP Cards and the actual IOC Blade 9010 Registers. The driver provides functions that use stream like operations, so you for instance read the ID PROM of the IP Card in Site A…

/* Open the Stream */

IOCHandle = open("/dev/IOC9010",0);

if (IOCHandle = = -1) printf("9010: Error Opening Device !\n");

/* Set up the Data Structure */

ioctl_buf.lAddress = IP_A_ID_BASE_ADDR + ID_MODEL_NUMBER;

ioctl_buf.lLength = 1;

ioctl_buf.sData = (unsigned long)(&data);

/* Read IP Card Type from ID PROM */

*val = ioctl(IOCHandle, OP_GENERAL_READ, &ioctl_buf);

printf("IP Slot %c = %4X\n", 'A', *val);

/* Close the Stream */

close(IOCHandle);

or reading the first 5 registers on the 8505 IP Card in Slot C…

IOCTL_BUF

ioctl_buf;

unsigned short
data = value;

unsigned short
readbuffer[5];

int

IOCHandle;

IOCHandle = open("/dev/IOC9010",0);

if (IOCHandle == -1) printf("8505: Error Opening Device !\n");

/* 8505 Basic Digital Output Setup */

ioctl_buf.lAddress = IP_C_IO_BASE_ADDR;

ioctl_buf.lLength = 5;

ioctl_buf.sData = (unsigned long)(readbuffer);

ioctl(IOCHandle, OP_GENERAL_READ_BLOCK, &ioctl_buf);

close(IOCHandle);

APPENDIX E
EPICS Variables Pre-Installed on IOC Blade 9010 Demo
	EPICS Variable Name

	Description
	Range

	Hy9010:ai-Fan1-PSU
	Speed in rpm of Fan 1 – Rear Fan nearest the PSU
	Limits 0-10,000 rpm.

Slow – 5,000 High - 7,000

	Hy9010:ai-Fan2-IPCards
	Speed in rpm of Fan 2 – Rear Fan near the IP Cards
	Limits 0-10,000 rpm.

Slow – 5,000 High - 7,000

	Hy9010:ai-Fan3-Invertors
	Speed in rpm of Fan 3 – Rear Fan near Invertors
	Limits 0-10,000 rpm.

Slow – 5,000 High - 7,000

	Hy9010:ai-Fan4-Trans
	Speed in rpm of Fan 4 – Front Fan near Transition
	Limits 0-10,000 rpm.

Slow – 5,000 High - 7,000

	Hy9010:ai-Fan5-PC104+
	Speed in rpm of Fan 5 – Front Fan for PC104+
	Limits 0-10,000 rpm.

Slow – 5,000 High - 7,000

	Hy9010:ai-Fan6-PMC
	Speed in rpm of Fan 6 – Fan under PMC
	NOT FITTED

	

	Hy9010:ai-temp1-IP
	Temperature of sensor near the IP Cards
	Limits 0-40 ºC in 10 ºC steps.

	Hy9010:ai-temp2-PSU
	Temperature of sensor near the PSU
	Limits 0-40 ºC in 10 ºC steps.

	Hy9010:ai-temp3-PC104+
	Temperature of sensor under the PC104+
	Limits 0-40 ºC in 10 ºC steps.

	Hy9010:ai-temp4-PMC
	Temperature of sensor near the PMC
	Limits 0-40 ºC in 10 ºC steps.

	Hy9010:ai-temp5-Trans
	Temperature of sensor near the transition cards
	Limits 0-40 ºC in 10 ºC steps.

	

	Hy9010:ai-IP-Card-A
	The ID from the ID PROM in Site A
	Hytec Electronics Ltd IP Cards are encoded in Hex.

	Hy9010:ai-IP-Card-B
	The ID from the ID PROM in Site B
	Hytec Electronics Ltd IP Cards are encoded in Hex.

	Hy9010:ai-IP-Card-C
	The ID from the ID PROM in Site C
	Hytec Electronics Ltd IP Cards are encoded in Hex.

	Hy9010:ai-IP-Card-D
	The ID from the ID PROM in Site D
	Hytec Electronics Ltd IP Cards are encoded in Hex.

	Hy9010:ai-IP-Card-E
	The ID from the ID PROM in Site E
	Hytec Electronics Ltd IP Cards are encoded in Hex.

	Hy9010:ai-IP-Card-F
	The ID from the ID PROM in Site F
	Hytec Electronics Ltd IP Cards are encoded in Hex.

	EPICS Variable Name

	Description
	Range

	IPCard:mbboDirect
	An 8505 Card in Slot C outputs is driven via this.
	0-65535

	

	IPCard:ao00
	An 8402 Card in Slot B output 0 is driven via this.
	-10V to +10V

	IPCard:ao01
	An 8402 Card in Slot B output 1 is driven via this.
	-10V to +10V

	IPCard:ao02
	An 8402 Card in Slot B output 2 is driven via this.
	-10V to +10V

	IPCard:ao03
	An 8402 Card in Slot B output 3 is driven via this.
	-10V to +10V

	IPCard:ao04
	An 8402 Card in Slot B output 4 is driven via this.
	-10V to +10V

	IPCard:ao05
	An 8402 Card in Slot B output 5 is driven via this.
	-10V to +10V

	IPCard:ao06
	An 8402 Card in Slot B output 6 is driven via this.
	-10V to +10V

	IPCard:ao07
	An 8402 Card in Slot B output 7 is driven via this.
	-10V to +10V

	IPCard:ao08
	An 8402 Card in Slot B output 8 is driven via this.
	-10V to +10V

	IPCard:ao09
	An 8402 Card in Slot B output 9 is driven via this.
	-10V to +10V

	IPCard:ao10
	An 8402 Card in Slot B output 10 is driven via this.
	-10V to +10V

	IPCard:ao11
	An 8402 Card in Slot B output 11 is driven via this.
	-10V to +10V

	IPCard:ao12
	An 8402 Card in Slot B output 12 is driven via this.
	-10V to +10V

	IPCard:ao13
	An 8402 Card in Slot B output 13 is driven via this.
	-10V to +10V

	IPCard:ao14
	An 8402 Card in Slot B output 14 is driven via this.
	-10V to +10V

	IPCard:ao15
	An 8402 Card in Slot B output 15 is driven via this.
	-10V to +10V

APPENDIX F

IOC Blade 9010 API Commands

__
IOC9010Open

Syntax
FUNCTION IOC9010Open(void) : int;

Parameter

None.

Result

If successful the return value will be positive and will be the Identifier.
A return value of -1 indicates the open has failed.
Description
This function is called to obtain an identifier for all future calls to the API Functions.
This function MUST be called before any other.
Example

int iIOC9010Handle;

iIOC9010Handle = IOC9010Open();

IOC9010Close

Syntax
FUNCTION IOC9010Close(int i9010Handler) : void;

Parameter

i9010Handler : The handler to be closed.

Result

0
- is returned if the API is successfully closed.

-1 - indicates the close has failed.
Description
This function is used to close the API, it is last action of the program before closing the application.
Example

IOC9010Close(i9010Handle);

IOC9010GetConfig

Syntax
FUNCTION IOC9010GetConfig(struct *PresentConfig) : int;

Parameter

*PresentConfig - A pointer to a structure to write the present configuration into..

Result

0
- is returned if the structure is successfully written.

-1 - indicates the structure update has failed.
Description
This function populates a passed structure with details of the IOC Blade 9010’s present configuration.
 *PresentConfig - The structure is as follows…
Example

IOC9010GetConfig();

__
IOC9010SetConfig

Syntax
FUNCTION IOC9010SetConfig() : int;

Parameter

Result

0
- is returned if the structure is successfully written.

-1 - indicates the structure update has failed.
Description
This function is used to update IOC Blade 9010’s present configuration.

Example

IOC9010FPC

Syntax
FUNCTION IOC9010FPC(int iMMIOnOFF) : int;

Parameter

iMMIOnOFF
- ‘1’ Enable Automatic Front Panel Man-Machine Interface.

- ‘0’ Disable Automatic Front Panel Man-Machine Interface.
Result

If successful the return value is 0, the automatic front panel control man-machine interface (MMI) is disabled.

A return value of -1 indicates the action has failed.
Description
This function is used to disable or enable the automatic front panel control man-machine interface (MMI) of the IOC Blade 9010. Once the MMI is disabled the display can be updated via the API.
Example

IOC9010FPC(0);

/* Disable MMI, so can now over write Display */
IOC9010FPC(1);

/* Enable MMI */

IOC9010LCDWrite

Syntax
FUNCTION IOC9010LCDWrite(U16 position, U8 *string) : int;

Parameter

position – The start position of the string on the LCD. Values of…

0 – 39 is the number characters in from the left on the top line.
64 - 103 is the number characters in from the left on the bottom line.

To ease use the header file includes the following defines which can be OR ed or added to produce the desired positioning. There is also the define API_LCD_CENTRE_ON which will automatically centre the passed string.

API_LCD_LINE_1

(0)
API_LCD_LINE_2

(64)
API_LCD_CENTRE_ON

(0x8000)

*string – a pointer to a null-terminated ASCII string (up to 40 characters in length) containing the string to be written to the display.
Result

0
- is returned if the display is successfully written.

-1 - indicates the display update has failed.
Description
This function updates the front panel LCD with the passed strings at the requested position.

This function is can ONLY be used when the automatic front panel man-machine interface is disabled.
Example

Char sTopString[] = “Top Line”;
Char sBottomString[] = “Bottom Line”;
/* Write String on Top Line Automatically Centred */
IOC9010LCDWrite(API_LCD_LINE_1
 | API_LCD_CENTRE_ON, sTopString);
/* Write String on Bottom Line 10 Character in from Left */

IOC9010LCDWrite(API_LCD_LINE_2
 + 10, sBottomString);

IOC9010LCDRead

Syntax
FUNCTION IOC9010LCDRead(U8 *LCDString) : int;

Parameter

*LCDString
- a pointer to a null-terminated string, 80 characters in length, containing the ASCII characters presently on the display.
Result

 0
- is returned if the display is successfully read.
-1 - indicates the reading of the display has failed.
Description
This function is used to obtain the present message on the front panel display. Characters 0-39 is the top line and characters 40-79 is the bottom line.

Example

char cLCDString[80];

if (IOC9010LCDRead(cLCDString) == 0)

{

printf(“The LCD is presently displaying %s\n”, cLCDString);
}

IOC9010LCDClear

Syntax
FUNCTION IOC9010LCDClear(void) : int;

Parameter

None.

Result

0
- is returned if the display is successfully cleared.

-1 - indicates the display update has failed.
Description
This function clears the front panel LCD i.e. sets all characters to space (ASCII 0x20).

This function is can ONLY be used when the automatic front panel man-machine interface is disabled.

Example

IOC9010LCDClear();

IOC9010ConnectFunctToKey

Syntax
FUNCTION IOC9010ConnectFunctToKey(void *function, int switch) : int;

Parameter

*function
– A pointer to the function to be called.

switch

– The switch to monitor.

To ease use the header file include defines for all switches.

Result

0
- is returned if the function is successfully connected to the requested switch.

-1 - indicates the action failed.
Description
This function is used to connect the passed function is to the requested switch.

The function will automatically perform all the hardware debounce etc.

This function is can ONLY be used when the automatic front panel man-machine interface is disabled.

Example

void vOKPressed(void)

{

printf(“OK Key Pressed\n”);

}
IOC9010ConnectFunctToKey(&vOKPressed(void), API_SWITCH_OK)

IOC9010ConnectFunctToInt

Syntax
FUNCTION IOC9010ConnectFunctToInt(void *function, int Int) : int;

Parameter

*function
– A pointer to the function to be called.

Int

– The switch to monitor.

To ease use the header file include defines for all IP Cards Interrupts.

Result

0
- is returned if the function is successfully connected to the requested Interrupt.

-1 - indicates the action failed.
Description
This function is used to the connect passed function to the requested interrupt source.

Example

void vIPSlotAISR(void)

{

printf(“IP Slot A Interrupt Detected\n”);

}
IOC9010ConnectFunctToInt(&vIPSlotAISR(void), API_INT_SLOT_A_0)

IOC9010CarrierRead

Syntax
FUNCTION IOC9010CarrierRead(U16 add, U16 len, U16 *data) : int;

Parameter

Add

– The position of the first register to read.

To ease use the header file include defines of Register Addresses.

Len

– The number of registers to read.

*data

– A pointer to an array or U16 (for single register access) to store the registers contents.

Result

0
- is returned if the carrier board register is successfully read.

-1 - indicates the carrier board register read has failed.
Description
This function is used to read the Control and Configurations Registers on the IOC Blade 9010 Carrier Board itself.
Example

U16 U16CarrierRegs[9];

/* Read all the 9010 Carrier Board Registers */

IOC9010CarrierRead(API_REG_CSR, 9, U16CarrierRegs);

IOC9010CarrierWrite

Syntax
FUNCTION IOC9010CarrierWrite(U16 add, U16 len, U16 *data) : int;

Parameter

Add

– The position of the first register to write.

To ease use the header file include defines of Register Addresses.

Len

– The number of registers to write.

*data

– A pointer to an array or U16 (for single register access) to store the register contents.
Result

0
- is returned if the carrier board register is successfully written.

-1 - indicates the carrier board register write has failed.
Description
This function is used to write the Control and Configurations Registers on the IOC Blade 9010 Carrier Board itself.

Example

U16 U16CarrierReg = 0x0001;

/* Write the IOC9010 Carrier Board CSR Register */

IOC9010CarrierWrite(API_REG_CSR, 1, &U16CarrierReg);

IOC9010IPRead

Syntax
FUNCTION IOC9010IPRead(U16 add, U16 len, U16 *data) : int;

Parameter

Add

– The position of the first IP register / memory to read.

To ease use the header file include defines of Addresses.

Len

– The number to read.

*data

– A pointer to an array or U16 (for single register access) to store the read contents.
Result

0
- is returned if the read is successful.

-1 - indicates the read has failed.
Description
This function is to read data from any of the IP Cards contents.
Example

U16 U16IPRegs[5];

U16 U16_IP_ID;

U16 U16_ADC;

/* Read the I/D Register from IP Card in Site A */

IOC9010IPRead(

API_ IP_A_ID_BASE_ADDR + API_ID_MODEL_NUMBER,

1,
& U16_IP_ID);
/* If its an Hytec Electronics Ltd 8401 8 X 16 Bit ADC */

if (U16_IP_ID == 0x8401)

{

/* Read the first 5 I/O Registers from IP Card in Site A */

IOC9010IPRead(API_ IP_A_IO_BASE_ADDR, 5, U16IPRegs);
/* Read All the ADC Values from IP Card in Site A */

IOC9010IPRead(API_ IP_A_IO_BASE_ADDR + 16, 8, U16_ADC);
}

IOC9010IPWrite

Syntax
FUNCTION IOC9010IPWrite(U16 add, U16 len, U16 *data) : int;

Parameter

Add

– The position of the first register to write.

To ease use the header file include defines of Addresses.

Len

– The number to write.

*data
-

– A pointer to an array or U16 (for single register access) to store the register contents.
Result

0
- is returned if the display is successfully cleared.

-1 - indicates the display update has failed.
Description
This function is to write data to any of the IP Cards contents.

Example

U16 U16IPReg = 0x0001;

U16 U16SetUp = {0x0C01,0x0078,0x0000,0x0000};

/* Write the 3rd I/O Registers on the IP Card in Site F */

IOC9010IPWrite(API_ IP_F_IO_BASE_ADDR + 2, 1, &U16IPReg);
/* Set up the Hytec Electronics Ltd 8505 in Site B */
IOC9010IPWrite(API_ IP_B_IO_BASE_ADDR + 1, 4, U16SetUp);

APPENDIX G

IOC Blade 9010 HTML Web Interface

Introduction

The HTML support is NOT intended for normal everyday control use (perhaps with the exception of the Remote Reset / Reboot) but is intended only for the following activities…

1. Out of the Box Testing – Since the HTML Webpage can be accessed by any internet browser, it is envisaged that one of its primary uses would be “Out of the Box” testing. The IOC Blade 9010 can be taken out of the box, be fitted with the desired selection of IP Cards. If the 9010 is then connected to a network (or straight to a PC with an Ethernet Crossover Lead), any internet browser can access the Web interface and confirm the unit settings and the IP Cards fitted.
2. Remote Testing – The HTML Webpage allows IP Card Registers to be overwritten as well as read. With Hytec Electronics Ltd IP Cards this will allow the HTML interface to directly modify outputs or read inputs. This effectively gives you an instant, network controlled, with flexible outputs / inputs piece of test equipment. Which you put anywhere on your network and test and monitor any system signals without the need to develop any software.
3. Configuration – The first tab of the Webpage will allow elements such as the 9010’s IP Address, Subnet Mask etc allowing the 9010’s general set up to be done relatively easily and quickly.
4. Remote Reset / Reboot – There is a button on the first tab of the Webpage, which will run a script which will shutdown and restart the IOC Blade 9010. This may allow a remote recovery if an EPICS or OPC application has crashed.
Using the HTML Webpage Interface

To access the Webpage simply start your favourite internet / web browser and where you normally enter the address, enter the IP Address of IOC Blade 9010 in dot-decimal notation (e.g. 172.23.81.192). As long as there is no problem with sub-net, firewall or some other access problem, you should immediately see the IOC Blade 9010 Webpage.

The webpage is made up of 7 tabbed sub pages, one for each IP Card and the front page which is specific to the 9010.
Letting the Webpage Know the IP Card “Personality”
The webpage reads the list of registers to show for each IP Card from the configuration file, ip_types.db, which is a simple comma delimited text file. Each IP Card’s “personality” is a single line entry in the file and is of the format…

Vendor ID, Product ID, No Reg, Reg Name 1 … Reg Name N , No Mem, Name Mem 1…Name Mem N
Vender ID

The Manufactor / Vendor ID of the IP Card as in the ID PROM.
Product ID

The Product ID of the IP Card as in the ID PROM.
No Reg

The Number of registers from start of the I/O Space to be named in the following data.

Reg Name 1

The Name to be displayed on the Web page of the first register in the I/O Space.

…

Reg Name N

The Name to be displayed on the Web page of the Nth register in the I/O Space.

No Mem

The Number of registers from the start of Memory Space to be named in following data.

Mem Name 1
The Name to be displayed on the Web page of the first register in the Memory Space.

…

Mem Name N
The Name to be displayed on the Web page of the Nth register in the Memory Space.

Notes:-

1. Vendor and Product ID Combination used to uniquely identify the IP Card.

2. Reg Name 1…N is a contiguous list of names for contiguous expecting to name a contig

Typical Examples of Hytec Electronics Ltd’s IP Cards are shown below…

0x00800300, 0x8505, 6,
LKC, CSR, IMR
, DBR, PSR, PPR
0x00800300, 0x8513, 4,
CSR, ARM, IRQ STATUS, IRQ MASK, 8, COUNT 0 LSB, ………
The IOC blade 9010 will be supplied with a default ip_types.db, which will support the Hytec Electronics Ltd range of IP Cards presently available. If you wish to support other manufacturers, you can simply add additional entries / lines to the file.
APPENDIX H

IOC Blade 9010 TCP/IP Interface

Introduction

This document defines the proprietary TCP/IP commands supported by Hytec Electronics Ltd equipment. The TCP/IP will support a single socket.

Command Set

All the TCP/IP Instructions are made up of a Command and Response, both have the same identifier, but the Response has the Most Significant Bit set (0x80).
Status

This command is used to obtain a list of IP (Industry Pack) cards installed in an IOC. This is assuming that the IP Cards fitted are VITA4 compliant and have their identification stored in an ID PROM.

Status Command

	Byte
	Byte Description
	Range

	1
	Command Identifier
	0x01

	2
	Command Length (bytes to follow)
	0x00

Figure 2: Format of Status Command

Status Command Response

	Byte
	Byte Description
	Range

	1
	Command Identifier
	0x81

	2
	Command Length (bytes to follow)
	IP Cards x 4

	3*
	Slot Number
	1-255

	4*
	IP Card 0=A, 1=B, 2=C, 3=D, 4=E and 5=F
	0-5

	5*
	Top 2 Nibbles of IP Card encoded as BCD
	0x00-0xFF

	6*
	Bottom 2 Nibbles of IP Card encoded as BCD
	0x00-0xFF

Note * These bytes are repeated for each and every IP Card Slot.

Figure 3: Format of Status Command Response

Read Command

This command is used to read data from any IP (Industry Pack) card installed in an IOC. The format of the data in the response is dependant on the IP card type.

Read Command

	Byte
	Byte Description
	Range

	1
	Command Identifier
	0x03

	2
	Command Length (bytes to follow)
	2

	3
	Slot Number
	1-255

	4
	IP Card 0=A, 1=B, 2=C, 3=D, 4=E and 5=F
	0-5

Figure 4: Format of Read Command

Read Command Response

	Byte
	Byte Description
	Range

	1
	Command Identifier
	0x83

	2
	Command Length (bytes to follow)
	Length of Response + 2

	3
	Slot Number
	1-255

	4
	IP Card 0=A, 1=B, 2=C, 3=D, 4=E and 5=F
	0-5

	5*
	Response
	0x00-0xFF

Note * These bytes are repeated for each and every relevant value on IP Card.

Figure 5: Format of Read Command Response

Write Command

This command is used to write data to any IP (Industry Pack) card installed in an IOC. The format of the data in the response is dependant on the IP card type. The response is simply an acknowledgement of receipt of the command.

Write Command

	Byte
	Byte Description
	Range

	1
	Command Identifier
	0x04

	2
	Command Length (bytes to follow)
	Length of Configure String + 2

	3
	Slot Number
	1-255

	4
	IP Card 0=A, 1=B, 2=C, 3=D, 4=E and 5=F
	0-5

	5*
	Control Data
	0x00-0xFF

Note * These bytes are repeated for each and every relevant value on IP Card.

Figure 6: Format of Write Command

Write Command Response

	Byte
	Byte Description
	Range

	1
	Command Identifier
	0x84

	2
	Command Length (bytes to follow)
	0

Figure 7: Format of Write Command Response

Page 2

1414
___1414

