Support for EPICS Time Stamps in asyn
Mark Rivers

September 16, 2013

Overview

There have been several requests to support EPICS time stamps in asyn port drivers and standard
asyn device support. This will be used by setting the TSE field in the EPICS records to -2. The
record support then directly uses the TIME field in the record as the timestamp. Device support
must have properly set the TIME field in the record.

Setting the timestamp when the driver processes, rather than later on when the record processes
can be desirable because the timestamp then reflects more accurately the actual time that the 1/0
operation was performed. It is also desirable to allow for a user-defined function to provide the
timestamp, rather than being restricted to simply calling epicsTimeGetCurrent(). For example,
the driver may be associated with a particular EPICS event, and the user-defined function would
then call epicsTimeGetEvent() with that event ID. This can return a site-specific time format.
For example at LCLS epicsTimeGetEvent() returns a timestamp where the low-order bits encode
the pulse ID. They want drivers to read that timestamp as soon as possible after the 1/0O is
complete.

The process of adding support for timestamps in asyn was begun by Eric Norum in asyn R4-20.
This added a new “timestamp” field to the pasynUser structure. Standard asyn device support
was changed to copy the pasynUser->timestamp field to precord->time. However, this was only
supported for callbacks to device support, i.e. records with SCAN=1/O Intr, and not for records
that called the read() function in the driver, i.e. records with SCAN!=1/O Intr. There was also no
code in pasynManager or asynPortDriver to assist drivers in adding timestamps to the pasynUser
structure on read operations or callbacks, or to support user-defined timestamp sources that could
work with any driver. The changes described in this document address these issues.



asynManager changes

In order to support these requirements the following functions have been added to asynManager.
typedef void (*timeStampCallback)(void *userPvt, epicsTimeStamp *pTimeStamp);

asynStatus (*registerTimeStampSource) (asynUser *pasynUser, void *userPvt,
timeStampCallback callback);

asynStatus (*unregisterTimeStampSource) (asynUser *pasynuUser);
asynStatus (*updateTimeStamp) (asynUser *pasynuUser);
asynStatus (*getTimeStamp)(asynUser *pasynUser, epicsTimeStamp *pTimeStamp);

asynStatus (*setTimeStamp)(asynUser *pasynUser, const epicsTimeStamp
*pTimeStamp) ;

asynManager now has an epicsTimeStamp value that is stored for each asyn port. When the port
is created there is a default function in asynManager to update this timestamp. This default
function simply calls epicsTimeGetCurrent().

pasynManager->registerTimeStampSource() registers a user-defined function that will return an
epicsTimeStamp each time that pasynManager->updateTimeStamp() is called.

pasynManager->unregisterTimeStampSource() unregisters any user-defined function and reverts
to the default timestamp source in asynManager.

pasynManager->getTimeStamp() returns the internal time stamp returned by the last call to
pasynManager->update TimeStamp().

pasynManager->setTimeStamp() sets the internal timestamp to the value passed in this function.

The functions above provide the required infrastructure for asynManager to support driver
timestamps, including user-defined timestamp sources. However, asynManager does not provide
a means to set the pasynUser->timestamp field in read or callback operations. This is because
asynManager is not involved in these operations; read calls are done directly from device support
to the asyn port driver, and callback operations are done directly from the asyn port driver to
device support.



asynShellCommands changes to load a user-defined timestamp function

Two new commands have been added to asyn/miscellaneous/asynShellCommands.c. These
commands can be called from the vxWorks or iocsh shells.

asynRegisterTimeStampSource(const char *portName, const char *functionName);

asynUnregisterTimeStampSource(const char *portName);

The “functionName” argument is the name of a user timestamp source function. It is defined the
same way one would define a function for the EPICS sub or asub records.

This is from asyn/iocBoot/ioctestErrors/st.cmd

asynRegisterTimeStampSource("'PORT1", "myTimeStampSource'™)

This is asyn/testErrorsApp/src/myTimeStampSource.cpp

#include <epicsTime.h>
#include <registryFunction.h>
#include <epicsExport_h>

// This function demonstrates using a user-define time stamp source

// 1t simply returns the current time but with the nsec field set to 0, so
that record timestamps

// can be checked to see that the user-defined function is indeed being
called.

static void myTimeStampSource(void *userPvt, epicsTimeStamp *pTimeStamp)

{
epicsTimeGetCurrent(pTimeStamp);

pTimeStamp->nsec = 0;

}

extern "C" {
epicsRegisterFunction(myTimeStampSource);

}

This is the line from the dbd file:

function('myTimeStampSource')



asynPortDriver changes

The asynPortDriver C++ classes now provide very thin wrappers around several of the
asynManager functions listed above. The following functions have been added to
asynPortDriver:

virtual asynStatus updateTimeStamp();
virtual asynStatus updateTimeStamp(epicsTimeStamp *pTimeStamp);
virtual asynStatus getTimeStamp(epicsTimeStamp *pTimeStamp);

virtual asynStatus setTimeStamp(const epicsTimeStamp *pTimeStamp);

The functions in asynPortDriver that do callbacks to device support (triggered by
callParamCallbacks(), doCallbacksXXXArray(), and doCallbacksGenericPointer()) now get the
timestamp using asynPortDriver::getTimeStamp() and set the pasynUser->timestamp field in the
callback.

In addition, all of the base class read() functions (e.g. readInt32(), readFloat64(),
readUnt32Digital, readOctet) now also get the timestamp using asynPortDriver::getTimeStamp()
and set the pasynUser->timestamp field.

Note that the asynPortDriver does not implement the readXXXArray() or readGenericPointer()
functions, these are only implemented in derived classes. All derived classes should set
pasynUser->timestamp and pasynUser->status in their readXXXArray() and
readGenericPointer() methods.



devEpics changes

In asynR4-20 the standard asyn device support was changed to set the record timestamp
(precord->time) from pasynUser->timestamp. However, this was only supported for callbacks to
device support, i.e. records with SCAN=1/O Intr, and not for records that called the read()
function in the driver, i.e. records that did not use SCAN= 1/O Intr. This has now been fixed so
that all input records get precord->time set from the pasynUser->timestamp from the driver,
whether the records have SCAN=I1/O Intr or not.

The previous release also had a bug in devAsynFloat64, so that records with
DTYP=AsynFloat64 did not get the proper timestamp even with SCAN=1/O Intr. This has been
fixed.



Testing

The timestamp support must be implemented separately for each asyn interface (asynint32,
asynFloat64, asynint8Array, etc.) in asynPortDriver. It must also be implemented separately for
dozens of device support types (asynInt32 for ai, longin, bi, etc, asynint32Array for waveform
record,etc.). There are also code differences depending on whether the record is 1/O Intr scanned
or not. For these reasons it is important to have a comprehensive test program to verify that the
timestamp support in asynManager, asynPortDriver, and standard asyn device support are all
working properly.

There was already a test program in asyn to verify that the record STAT and SEVR fields were
being set properly for most records types with standard asyn device support, and for most asyn
interfaces, with both periodically scanning and 1/0 Intr scanning. This is an asyn driver that
derives from asynPortDriver and is located in asyn/testErrorsApp/src/testErrors.cpp. This driver
and its example 10C (asyn/iocBoot/iocTestErrors) have been modified to also test the new
timestamp support. The driver now calls asynPortDriver::updateTimeStamp() each time new
values are computed, and it sets pasynUser->timestamp in the readXXXArray() methods.

testErrorsApp/src/myTimeStampSource is a new file that contains an example of a user-defined
timestamp source. The timestamp source in that file simply calls
epicsTimeGetCurrent(&timeStamp) and then sets timeStamp.nsec=0, so the time stamp is
always an integer number of seconds.

There are 3 settings in the 10C startup script that can be set for testing.
1) TSE in every record:
0 (use the normal record timestamp mechanism)
-2 (the record timestamp is set by device support)

2) SCAN in every record
“2 second”. Periodically scan the record

“1/O Intr” Use callbacks from driver to trigger record processing

3) Time stamp source
Default timestamp source in asynPortDriver

User-defined timestamp source (timeStamp.nsec=0)



There are thus 8 tests that need to be done to verify that all combinations of the above parameters
work correctly.

The record timestamps and record values were monitored with the “camonitor” program from
epics base. asyn/iocBoot/iocTestErrors/timeStampMonitor.sh contains the camonitor commands
to monitor all of the PVs in the test database.



Result 1. TSE=0, SCAN=2 second, user-defined timestamp source=No.

testErrors:Ailnt32 2013-09-11 12:44:31.378018 1 12
testErrors:Longinint32 2013-09-11 12:44:31.378024 1 12
testErrors:Bilnt32 2013-09-11 12:44:31.378020 1 One
testErrors:MbbiInt32 2013-09-11 12:44:31.378028 1 Twelve STATE

MAJOR

testErrors:Bilnt32 2013-09-11 12:44:31.378020 1 One
testErrors:LonginUInt32D 2013-09-11 12:44:31.378026 1 O
testErrors:BiUInt32D 2013-09-11 12:44:31.378022 1 Zero
testErrors:MbbiUInt32D 2013-09-11 12:44:31.378030 1 Zero
testErrors:MbbiDUINt32D 2013-09-11 12:44:31.378032 1 O
testErrors:AiFloat64 2013-09-11 12:44:31.378013 1 1.2
testErrors:SiOctet 2013-09-11 12:44:31.378036 1 1.2
testErrors:WFInOctet 2013-09-11 12:44:31.378044 1 49
testErrors:WFInt8 2013-09-11 12:44:31.378050 1 12
testErrors:WFIntl6 2013-09-11 12:44:31.378046 1 12
testErrors:WFInt32 2013-09-11 12:44:31.378048 1 12
testErrors:WfFloat32 2013-09-11 12:44:31.378041 1 1.2
testErrors:WfFloat64 2013-09-11 12:44:31.378043 1 1.2
testErrors:AiFloat64 2013-09-11 12:44:33.378144 1 1.6
testErrors:Ailnt32 2013-09-11 12:44:33.378155 1 O
testErrors:Bilnt32 2013-09-11 12:44:33.378158 1 Zero
testErrors:Bilnt32 2013-09-11 12:44:33.378158 1 Zero
testErrors:Longinint32 2013-09-11 12:44:33.378164 1 O
testErrors:Mbbilnt32 2013-09-11 12:44:33.378169 1 Zero
testErrors:SiOctet 2013-09-11 12:44:33.378178 1 1.6
testErrors:WfFloat32 2013-09-11 12:44:33.378183 1 1.6
testErrors:WfFloat64 2013-09-11 12:44:33.378186 1 1.6
testErrors:WFInOctet 2013-09-11 12:44:33.378188 1 49
testErrors:WFIntl6 2013-09-11 12:44:33.378191 1 O
testErrors:WFInt32 2013-09-11 12:44:33.378193 1 O
testErrors:WFInt8 2013-09-11 12:44:33.378195 1 O
testErrors:AiFloat64 2013-09-11 12:44:35.378241 1 2

This test shows the expected normal behavior. Each record is processing every 2 seconds. The
timestamps for each record in the group are slightly different because the records are processing
sequentially in the 2 second scan task, and the timestamp is generated when the record processes.



Result 2. TSE=0, SCAN=2 second, user-defined timestamp source=Yes.

testErrors:Ailnt32
testErrors:Longinlnt32
testErrors:Bilnt32
testErrors:MbbiInt32
testErrors:Bilnt32

testErrors:LonginUInt32D

testErrors:BiUInt32D
testErrors:MbbiUInt32D
testErrors:MbbiDUINt32D
testErrors:AiFloat64
testErrors:SiOctet
testErrors:WFfInOctet
testErrors:WFInt8
testErrors:WFfIntl6
testErrors:WFfInt32
testErrors:WFFloat32
testErrors:WFFloat64
testErrors:AiFloat64
testErrors:Ailnt32
testErrors:Longinlnt32
testErrors:MbbiInt32
MAJOR
testErrors:SiOctet
testErrors:WFFloat32
testErrors:WfFloat64
testErrors:WFfInOctet
testErrors:WFIntl6
testErrors:WFInt32
testErrors:WFInt8
testErrors:AiFloat64
testErrors:Ailnt32

2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11

2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11

12:52:02.623938
12:52:02.623944
12:52:02.623940
12:52:02.623948
12:52:02.623940
12:52:02.623946
12:52:02.623942
12:52:02.623950
12:52:02.623952
12:52:02.623934
12:52:02.623956
12:52:02.623964
12:52:02.623970
12:52:02.623966
12:52:02.623968
12:52:02.623960
12:52:02.623962
12:52:04.624023
12:52:04.624035
12:52:04.624044
12:52:04.624048

12:52:04.624058
12:52:04.624066
12:52:04.624071
12:52:04.624073
12:52:04.624075
12:52:04.624079
12:52:04.624083
12:52:06.624110
12:52:06.624122

RPRRPRRPRRPRRRRRPRRPRRPRPRRRRRPRRRRRR

RPRRPRPRRRRRR

8

8

One

Eight STATE MINOR
One

0

Zero

Zero

0

0.8
0.8

As expected this test shows the same results as test 1, because setting a user-defined timestamp
source should have no effect when TSE=0.



Result 3. TSE=0, SCAN=I1/O Intr, user-defined timestamp source=No.

testErrors:Ailnt32
testErrors:Longinlnt32
testErrors:Bilnt32
testErrors:MbbiInt32
testErrors:Bilnt32

testErrors:LonginUInt32D

testErrors:BiUInt32D
testErrors:MbbiUInt32D
testErrors:MbbiDUINt32D
testErrors:AiFloat64
testErrors:SiOctet
testErrors:WFfInOctet
testErrors:WFInt8
testErrors:WFfIntl6
testErrors:WFfInt32
testErrors:WFFloat32
testErrors:WFFloat64
testErrors:Ailnt32
testErrors:Longinlnt32
testErrors:MbbiInt32
testErrors:AiFloat64
testErrors:SiOctet
testErrors:WFInOctet
testErrors:WFInt8
testErrors:WFIntl6
testErrors:WFfInt32
testErrors:WFFloat32
testErrors:WFFloat64
testErrors:Ailnt32

2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11

12:57:55.453886
12:57:55.453891
12:57:55.453890
12:57:55.453892
12:57:55.453890
12:57:53.053579
12:57:53.053578
12:57:53.053581
12:57:53.053584
12:57:55.453894
12:57:55.453895
12:57:55.453897
12:57:55.453899
12:57:55.453900
12:57:55.453901
12:57:55.453902
12:57:55.453903
12:57:55.954073
12:57:55.954086
12:57:55.954088
12:57:55.954090
12:57:55.954092
12:57:55.954095
12:57:55.954098
12:57:55.954099
12:57:55.954101
12:57:55.954102
12:57:55.954103
12:57:56.454213

RPRRPRRPRPRRRRPRRPRRPRRPRRPRRPRRPRRPRPRPRPRREPRERRRRRRRR

6

6

One

Six STATE MINOR
One

0

Zero

Zero

0

Seven STATE MINOR

0.7
0.7

This test shows the expected normal behavior. Each record is processing every 0.5 seconds

because that is the delay in the driver thread doing the callbacks. The timestamps for each record

in the group are slightly different because the records are processing sequentially and the
timestamp is generated when the record processes.



Result 4. TSE=0, SCAN=I1/O Intr, user-defined timestamp source=Yes.

testErrors:Ailnt32
testErrors:Bilnt32
testErrors:Bilnt32
testErrors:Longinlnt32
testErrors:MbbiInt32
testErrors:AiFloat64
testErrors:SiOctet
testErrors:WFfInOctet
testErrors:WFInt8
testErrors:WFIntl6
testErrors:WFfInt32
testErrors:WfFloat32
testErrors:WFFloat64
testErrors:Ailnt32
testErrors:Bilnt32
testErrors:Bilnt32
testErrors:Longinint32
testErrors:MbbiInt32
testErrors:AiFloat64
testErrors:SiOctet
testErrors:WFfInOctet
testErrors:WFInt8
testErrors:WFIntl6
testErrors:WFInt32
testErrors:WfFloat32
testErrors:WfFloat64
testErrors:Ailnt32

As expected this test shows the same results as test 3, because setting a user-defined timestamp

2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11

source should have no effect when TSE=0.

13:03:15.191708
13:03:15.191718
13:03:15.191718
13:03:15.191721
13:03:15.191723
13:03:15.191725
13:03:15.191727
13:03:15.191729
13:03:15.191732
13:03:15.191733
13:03:15.191734
13:03:15.191736
13:03:15.191737
13:03:15.691816
13:03:15.691825
13:03:15.691825
13:03:15.691828
13:03:15.691830
13:03:15.691832
13:03:15.691833
13:03:15.691836
13:03:15.691839
13:03:15.691840
13:03:15.691841
13:03:15.691842
13:03:15.691843
13:03:16.192034

RPRRPRPRRPRRPRRRPRRPRRPRPRRPRRRPRRPRPRRPRRPRERRRERRPRRRRRER

(@)

Zero
Zero

Zero

~ ~

NP R RRR



Result 5. TSE=-2, SCAN=2 second, user-defined timestamp source=No.

testErrors:Ailnt32 2013-09-11 13:10:02.410217 1 12
testErrors:Longinint32 2013-09-11 13:10:02.410217 1 12
testErrors:Bilnt32 2013-09-11 13:10:02.410217 1 One
testErrors:MbbiInt32 2013-09-11 13:10:02.410217 1 Twelve STATE

MAJOR

testErrors:Bilnt32 2013-09-11 13:10:02.410217 1 One
testErrors:LonginUInt32D 2013-09-11 13:10:02.410217 1 O
testErrors:BiUInt32D 2013-09-11 13:10:02.410217 1 Zero
testErrors:MbbiUInt32D 2013-09-11 13:10:02.410217 1 Zero
testErrors:MbbiDUINt32D 2013-09-11 13:10:02.410217 1 O
testErrors:AiFloat64 2013-09-11 13:10:02.410217 1 1.2
testErrors:SiOctet 2013-09-11 13:10:02.410217 1 1.2
testErrors:WFInOctet 2013-09-11 13:10:02.410217 1 49
testErrors:WFInt8 2013-09-11 13:10:02.410217 1 12
testErrors:WFIntl6 2013-09-11 13:10:02.410217 1 12
testErrors:WFInt32 2013-09-11 13:10:02.410217 1 12
testErrors:WfFloat32 2013-09-11 13:10:02.410217 1 1.2
testErrors:WfFloat64 2013-09-11 13:10:02.410217 1 1.2
testErrors:AiFloat64 2013-09-11 13:10:04.410734 1 1.6
testErrors:Ailnt32 2013-09-11 13:10:04.410734 1 O
testErrors:Bilnt32 2013-09-11 13:10:04.410734 1 Zero
testErrors:Bilnt32 2013-09-11 13:10:04.410734 1 Zero
testErrors:Longinint32 2013-09-11 13:10:04.410734 1 O
testErrors:Mbbilnt32 2013-09-11 13:10:04.410734 1 Zero
testErrors:SiOctet 2013-09-11 13:10:04.410734 1 1.6
testErrors:WfFloat32 2013-09-11 13:10:04.410734 1 1.6
testErrors:WfFloat64 2013-09-11 13:10:04.410734 1 1.6
testErrors:WFInOctet 2013-09-11 13:10:04.410734 1 49
testErrors:WFIntl6 2013-09-11 13:10:04.410734 1 O
testErrors:WFInt32 2013-09-11 13:10:04.410734 1 O
testErrors:WFInt8 2013-09-11 13:10:04.410734 1 O
testErrors:AiFloat64 2013-09-11 13:10:06.411245 1 2
testErrors:Ailnt32 2013-09-11 13:10:06.411245 1 4

This test shows the expected result. The timestamps within a single 2-second group are

identical, which is different from test 1. This is because the timestamps are coming from the
driver, reflecting the most recent call by the driver to updateTimeStamp(). The timestamps have
non-zero nsec field because the default timestamp source in pasynManager is being used.



Result 6. TSE=-2, SCAN=2 second, user-defined timestamp source=Yes.

testErrors:Ailnt32
testErrors:Longinlnt32
testErrors:Bilnt32
testErrors:MbbiInt32
testErrors:Bilnt32

testErrors:LonginUInt32D

testErrors:BiUInt32D
testErrors:MbbiUInt32D
testErrors:MbbiDUINt32D
testErrors:AiFloat64
testErrors:SiOctet
testErrors:WFfInOctet
testErrors:WFInt8
testErrors:WFfIntl6
testErrors:WFfInt32
testErrors:WFFloat32
testErrors:WFFloat64
testErrors:AiFloat64
testErrors:Ailnt32
testErrors:Longinlnt32
testErrors:MbbiInt32
MAJOR
testErrors:SiOctet
testErrors:WFFloat32
testErrors:WfFloat64
testErrors:WFfInOctet
testErrors:WFIntl6
testErrors:WFInt32
testErrors:WFInt8
testErrors:AiFloat64
testErrors:Ailnt32

2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11

2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11

13:15:31.000000
13:15:31.000000
13:15:31.000000
13:15:31.000000
13:15:31.000000
13:15:31.000000
13:15:31.000000
13:15:31.000000
13:15:31.000000
13:15:31.000000
13:15:31.000000
13:15:31.000000
13:15:31.000000
13:15:31.000000
13:15:31.000000
13:15:31.000000
13:15:31.000000
13:15:33.000000
13:15:33.000000
13:15:33.000000
13:15:33.000000

13:15:33.000000
13:15:33.000000
13:15:33.000000
13:15:33.000000
13:15:33.000000
13:15:33.000000
13:15:33.000000
13:15:35.000000
13:15:35.000000

RPRRPRRPRRPRRRRRPRRPRRPRPRRRRRPRRRRRR

RPRRPRPRRRRRR

8

8

One

Eight STATE MINOR
One

0

Zero

Zero

0

0.8
0.8

This test shows the expected result. The timestamps within a single 2-second group are
identical, which is different from test 2. This is because the timestamps are coming from the
driver, reflecting the most recent call by the driver to updateTimeStamp(). The timestamps have
no fractional seconds because the user-defined timestamp source is being used, which sets

timeStamp.nsec=0.



Result 7. TSE=-2, SCAN=I/O Intr, user-defined timestamp source=No.

testErrors:Ailnt32
testErrors:Longinlnt32
testErrors:MbbiInt32
testErrors:AiFloat64
testErrors:SiOctet
testErrors:WFInOctet
testErrors:WFInt8
testErrors:WFIntl6
testErrors:WFInt32
testErrors:WFFloat32
testErrors:WfFloat64
testErrors:Ailnt32
testErrors:Longinint32
testErrors:MbbiInt32
testErrors:AiFloat64
testErrors:SiOctet
testErrors:WFInOctet
testErrors:WFInt8
testErrors:WFIntl6
testErrors:WFInt32
testErrors:WfFloat32
testErrors:WfFloat64
testErrors:Ailnt32

2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11

13:18:40.790244
13:18:40.790244
13:18:40.790244
13:18:40.790244
13:18:40.790244
13:18:40.790244
13:18:40.790244
13:18:40.790244
13:18:40.790244
13:18:40.790244
13:18:40.790244
13:18:41.290368
13:18:41.290368
13:18:41.290368
13:18:41.290368
13:18:41.290368
13:18:41.290368
13:18:41.290368
13:18:41.290368
13:18:41.290368
13:18:41.290368
13:18:41.290368
13:18:41.790539

RPRRPRPRRPRRRRPRRPRRPRRPRRRRRPRRPRRPRRPRRRERRRR

OO uw;mo o

N~NOOOo oo
(o))}

Seven STATE MINOR

0.7
0.7

STATE MINOR

This test shows the expected result. The timestamps within a single 0.5 second group are
identical, which is different from test 3. This is because the timestamps are coming from the

driver, reflecting the most recent call by the driver to updateTimeStamp(). The timestamps have

non-zero nsec field because the default timestamp source in pasynManager is being used.



Result 8. TSE=-2, SCAN=I/O Intr, user-defined timestamp source=Yes.

testErrors:Ailnt32
testErrors:BilInt32
testErrors:Bilnt32

testErrors:Longinlnt32

testErrors:MbbiInt32
testErrors:AiFloat64
testErrors:SiOctet
testErrors:WFfInOctet
testErrors:WFInt8
testErrors:WFIntl6
testErrors:WFfInt32
testErrors:WfFloat32
testErrors:WFFloat64
testErrors:Ailnt32
testErrors:Bilnt32
testErrors:Bilnt32

testErrors:Longinint32

testErrors:MbbiInt32
testErrors:AiFloat64
testErrors:SiOctet
testErrors:WFfInOctet
testErrors:WFInt8
testErrors:WFIntl6
testErrors:WFInt32
testErrors:WfFloat32
testErrors:WfFloat64
testErrors:Ailnt32

Tt

2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11
2013-09-11

13:22:55.000000
13:22:55.000000
13:22:55.000000
13:22:55.000000
13:22:55.000000
13:22:55.000000
13:22:55.000000
13:22:55.000000
13:22:55.000000
13:22:55.000000
13:22:55.000000
13:22:55.000000
13:22:55.000000
13:22:55.000000
13:22:55.000000
13:22:55.000000
13:22:55.000000
13:22:55.000000
13:22:55.000000
13:22:55.000000
13:22:55.000000
13:22:55.000000
13:22:55.000000
13:22:55.000000
13:22:55.000000
13:22:55.000000
13:22:56.000000

RPRRPRPRRPRRPRRRPRRPRRPRPRRPRRRPRRPRPRRPRRPRERRRERRPRRRRRER

(@)

Zero
Zero

Zero

~ ~

NP R RRR

This test shows the expected result. The timestamps within a single 0.5 second group are
identical, which is different from test 4. This is because the timestamps are coming from the
driver, reflecting the most recent call by the driver to updateTimeStamp(). The timestamps have
no fractional seconds because the user-defined timestamp source is being used, which sets
timeStamp.nsec=0. Because the records are processing at 0.5 seconds two sets of record
processing have the same timestamp, since it has 1 second resolution.



Result 9. TSE=-2, SCAN=I/O Intr, user-defined timestamp source=Yes.

testErrors:WFInt32 2013-09-11 13:33:31.000000 1 13
testErrors:WfFloat32 2013-09-11 13:33:31.000000 1 4.5
testErrors:WfFloat64 2013-09-11 13:33:31.000000 1 4.5
testErrors:Ailnt32 2013-09-11 13:33:31.796358 1 14
testErrors:Longinlnt32 2013-09-11 13:33:31.796358 1 14
testErrors:MbbiInt32 2013-09-11 13:33:31.796358 1 Fourteen STATE

INVALID

testErrors:AiFloat64 2013-09-11 13:33:31.796358 1 4.6
testErrors:SiOctet 2013-09-11 13:33:31.796358 1 4.6
testErrors:WFfInOctet 2013-09-11 13:33:31.796358 1 52
testErrors:WFInt8 2013-09-11 13:33:31.796358 1 14
testErrors:WFIntl6 2013-09-11 13:33:31.796358 1 14
testErrors:WFInt32 2013-09-11 13:33:31.796358 1 14
testErrors:WfFloat32 2013-09-11 13:33:31.796358 1 4.6
testErrors:WfFloat64 2013-09-11 13:33:31.796358 1 4.6
testErrors:Ailnt32 2013-09-11 13:33:32.296489 1 15
testErrors:Longinlnt32 2013-09-11 13:33:32.296489 1 15
testErrors:MbbiInt32 2013-09-11 13:33:32.296489 1 Fifteen STATE

INVALID

testErrors:AiFloat64 2013-09-11 13:33:32.296489 1 4.7
testErrors:SiOctet 2013-09-11 13:33:32.296489 1 4.7
testErrors:WFfInOctet 2013-09-11 13:33:32.296489 1 52
testErrors:WFInt8 2013-09-11 13:33:32.296489 1 15
testErrors:WFIntl6 2013-09-11 13:33:32.296489 1 15
testErrors:WFfInt32 2013-09-11 13:33:32.296489 1 15
testErrors:WfFloat32 2013-09-11 13:33:32.296489 1 4.7
testErrors:WFFloat64 2013-09-11 13:33:32.296489 1 4.7
testErrors:Ailnt32 2013-09-11 13:33:32.000000 1 O
testErrors:Bilnt32 2013-09-11 13:33:32.000000 1 Zero
testErrors:Bilnt32 2013-09-11 13:33:32.000000 1 Zero

The above output shows the result when the following commands are typed at the 10C shell.

unregisterMyTimeStampSource(PORT1)
registerMyTimeStampSource(PORT1)
unregisterMyTimeStampSource(PORT1)

The timestamps switch between being the user-defined timestamp (no fractional seconds) and the
default timestamp source (with fractional seconds). This shows that timestamp source can be
changed dynamically at run-time.



