asynDriver

asynDriver

Table of Contents

asynDriver: Asynchronous Driver Support 1
(011015 0 00 118 4101011~ ¢ YR TRTRTE RPN 1
LICENSE AGIEOIMEIIL. .. euveeuttetietietietietterttesteesteeattesteesbeesbeesbeesbeesbeesbeesbeanbtesbeesbeesbeesatenseesbeesbeeshtesueesatenneesbeens 1
[000) 1115 111 NN TR 1
PUIDOSE ..ttt b et e bt e s bt e sa bt e sa bt e bt e e b et e bt e e sab e e sabeeea b e e eabee e baeenbbeenabeesateas 2
T 72110 TR 3
ACKNOWIEAGIMENLS ... ceuteeuttettetieitteet ettt ettt et et e st esb e e s bt e sbtesbeesbeesbeesbtesbeesbeesbeesbteabeeabeesbeesheesueesatanneesseens 4
OVEIVIEW OF ASYIIDIIVEE .. euveetietietieteeit ettt ettt ettt b e bt e bt e bt e bt e bt e bt e bt e be e be e bt ebe e bt enbeenbeebeenne 4

| BT R 1L L0 0 LI PPN 4
StANAATd INEETEACES. c.vvvvveeeieeeeieeeee ettt e ettt e e e e et e e e e e e e e bt e e e e eessesstaeeeeessessaaaeeeessennsaaeees 6
(€15 115 W (ol 1 10=3 0 7o PSRRI 7
ASYIIMIANAZEL . ..cevteeiteeeitie ettt ettt ettt e st e st e et e et e ettt ettt e sabeesabeesabeesabeeeabaeenbaeesabeesabeesabeesabaeenbaeenbaeennee 7
Multiple Device vs Single Device POrt DIIVELS. ... cooueereerienieiieniiesiterieesieesieeiee et 11
CoNNECtion MANAZEIMNEIIEeeveetteteeteetteteeteeteesteestee bt e bt ebeesbeete e bee bt ebeenbeenseenseenseebeenbeenseenseensean 11
Protecting a Thread from BIOCKING.cveerveertientieiieiiesieesitesit ettt ettt ettt e sbe e 11
POIETRICAC. ..ottt ettt e bt e s bt e s bt e s abeesabe e e bt e e nbbeesabeesabeesabeesabaeenbees 12
BN ST Ao il @) o3 215 () N USSR 12
) I LR Y U721 o) o RPN 12
Requesting aCCEeSS £0 8 POT....eeutetietieriierteentterttert et te st esteesteesbeesbeesbee s bt esbeesbeesbeesbeenbeenbeesbeesbeebeenbeanses 13
queueRequest - FIOW Of CONIOL...coviitiiitieiieiieeee ettt ettt ettt et an 13
asynDriver Structures and INEETTACES.eerueeruiiriieieeeete ettt ettt ettt ettt et an 15
ASVIESEALUIS. .. eenteeutteteett et e et e e bt e bt e bt e bt e bt e bt e bt en bt eabeeabe e bt ea bt eabeen bt ea bt e bt e bt e bt ea bt eabe e be e bt e bt e bt enbeenbeeneean 16
P 0] B (o7c) o) 5 (0] 1 VOO UOOEOU O RU OO 16
P 010101511 1) 24 (0] 5 L /OO OO USROS 16
ASYTIUISOI. ¢t euvtteitteeitee ettt ettt ettt ettt e sttt e sabeesabeeeab et e be e e bt e e bt e e sabee s e be e et et e be e e bt e e sabeesabeeeabeeeabeeeabaeensbeenabeens 17
ASYIIINEETTACE .- e ettt ettt ettt e b e bt et e bt e bt e bt e bt et e et e et e e bt e bt ebeebeenteeneean 18
ASYIMIANMAZEL . ..ceueveeiieeeiiee ettt ettt ettt ettt e st ee ettt et e e bt e e bt e esbteesabeesabeeeabeeeabeeenbteesabeesabeesabeesabeesnbaeensbeenareens 19
ASYNCOIMITION - ceneteeneteeeuiee ettt ettt ettt e sttt esuteesabee ettt ebeeebeeenbteesabeesabeesabeeeabeeenbaeenabeesabeesabeesabeeenbaeensaeenareens 25
asynCommONSYNCTOL.....ccouiiiiiiiiitiieeete ettt ettt st e e e be e e bt e e sabeesabeesabeesabeeeabaeensbeenabeens 25
ASYIIDTVISOT: ..t eutteteett ettt ettt et et e bt e bt e bt e bt e bt e bt e bt et e en bt e be e bt e bt eabeenbeenbeenteebeebeenbeenbeenbeentean 26
ASYNLLOCKPOTEINOLIEY ...t teuteeteettete ettt ettt ettt et et e bt et e bt e bt et e eteebeenbeenbeenseeneean 26
FiTA 010 0] 5 (o) 1 WU OO OO OO U U USRS 27
B TeTo 61103 2 o= YOO 27
ASYIITTACE . e eeteeiteeeitee ettt ettt ettt e b et e s bt e e st e st e e e bt e ettt e bt e e sabeesabeesabeesabeeenbeeensbeenabeens 28
Standard Message Based INtEIfaCES ... cooueeiuiiiiiiieiieie ettt ettt ettt 31
ASYTIOICTEE e envteeeteeuteeeuiee ettt ettt ettt e sttt e sateeeabee ettt e bae e bt e enbbeesabeesabeeeabeeeabeeenbteenabeesabeesabeeeabeeeabaeensbeenabeens 31
ASYNOCIEESYNICTO ...ttt ettt sttt ettt e bt e e sabeesabeesabeesabeesabeeenseeenaneens 33
End Of STING SUPDOLEceteetiitietiettett ettt ettt ettt e bt e b e b e e st e e s bt e sbeesbe e bt e bt e bt esbeesbeenbeenbeenees 34
Standard Register Based INtEITACES. ... uevveerteertiitieiieteeteete ettt ettt ettt ettt et ettt e an 34
) F08 006 13 To1 5 T0) o RS SPRRRN 34
addr - What does it mean for register based interfaces?........ccceerueerieneeiieiieeeeeee e 35
20 0110) (S B A7) £ OSSR 36
ASYIINESD ..ttt ettt et ettt e bt e bt e bt e bt e bt e bt e bt e bt e be e bt e bt et e e bt e bt enbeenbeenteentean 36
ASYNINE32SVIICTO.eieiiieiiiieie ettt ettt st s e st e bt e e bt e e sabeesabeesabeesabeeeabeeensaeenabeens 37
ASYNUINE32DIGZITAL 1. ..eenteetietieie ettt ettt ettt et et et e bt e bt e bt e bt et e ebeebeenbeenbeenteeneean 38
asynUInt32Digital SYNCIO. ... couieiiiiiitieieee ettt ettt ettt ettt et et e e et e bt eabeebeenbeeneean 40
ASYIFTOALOA ... ettt ettt ettt b e e bt e bt e bt et e e bt e bt e bt e bt e b e eabeenbeente e bt e bt enbeenbeenbeentean 41

ASYNFIOAOASYIICTO. ...ttt ettt et ettt et et e bt e bt et e et e et e eteebeenbeenbeenseeneean 42

asynDriver

Table of Contents
asynDriver: Asynchronous Driver Support

asynX XX Array (where XXX is Int8. Int16. Int32. Float32 or FIoat64).......ccceeveerieeneienieeieeieeieeees 42
ASYNXXXATTAYSYICTQ ..ottt ettt et st s e ettt ettt e sabeesabeesabeesabeeeabeeenseeenaneens 43
ASYIETIUINL ..ottt ettt ettt e bt e e s bt e e sabeesabeesabe e eabeeeabteesabeesabeesabeesabeeeabaeensbeenabeens 44
ASYNENUMSYICTO ..ttt ettt ettt et b e e bt et et e et e e beebeenbeenbeenteentean 46
PN (5] 115 8 (o] a0 11113 RO OO OO PRSP 46
asynGenericPOINtErSYNCTOiiiuiiiiiieii ettt et ettt ettt et e be et e be et e et s 47
asynStandardINterfaceSBasE. ... coueetieitieitieti ettt et ettt ettt eee s 48
asynStandardINerfaces SITCIULE.eoueeteertietieteeteete et e et et et et e et e bt e bt e be e bt enbe e bt enteebeeabeenbeenseenteeneeas 48
asynStandardInterfacesBase INtBITACE.oueeruietieitieieete ettt 49
Standard INterpOSe INLEITACES ... vverteeteeitietieie ettt ettt ettt ettt e bt et e et et eabe et e enteeneean 51
ASYNINEETPOSEIEDS. ¢ttt ettt ettt ettt e e et e e bt e bt e bt e bt e bt e te et e e be e bt et e enteentean 51
ASYNINEETPOSEITISI. ... ettt ettt ettt ettt e bt et e bt e bt e e et e e beeabeenbeenteeneean 52
Generic Device Support for EPICS TECOTAS ... coutertiiriieiieiieieeiee ettt 52
asynManager interrupts and EPICS device SUDPOLL.....cc.eerveertieriieriieieerieeieeie ettt eee ettt 53
Initial values Of OUEPUE TECOTAS. . .vteuietietietteittente ettt ettt et ettt e bt et e bt e bt e sbe e b e sbe e beesbeesbeesbeenbeenaes 53
Enum values for bi. bo. mbbi. and MbbO TECOTAS......ccvvvviiiieiiiiiieiiee et 54
Callback updates fOr OUEPUL TECOTAS ... ceveereetietieteeteete et ettt et et et et e bt e bt et e et eteebe e beeabeenbeenteeneean 54
Buffering of driver CallDaCKS.coiueiruiiiieiieieee ettt ettt ettt b e 54
TIINE SEATIIDS. e euveeuveenteetiettenteente et e et e e bt e bt e bt e st e esbe e bt e bt e b eebe e bt e bt e bt e bt e bt e bt e bt e ebeeabeenbe e bt enbeenbeenbeenbeenbeenses 54
ASYNINE32 dEVICE SUDPOIL.cuveeuteeuteentieteeteenteestteteeteetee bt ebe e bt eabee bt e beebeeabeeabeenbeenbeanteenteenbeenbeenbeenseenseaneean 55
asynIntXXXArray device support (XXX=8. 16 OF 32).....cceruierteeriiiriieiieenieenieeie et et eseeeteeste et ebeeeeeeeas 57
asynXXXTimeSeries device support (XXX=Int32 or FIoath4)........ccceveeriiriieneeiieieeieeieeeeeeeeeie e 58
deVASYNUINE32DIZILALeevteteetieieeieete ettt ettt ettt et et et e et e e bt e bt e bt eabe e bt enteenbeeabeenbeenbeenseeneean 58
devASYNFIOAtO4 dEVICE SUDPOIL . ..cuveeteetietieteeteeteeteenteeteeteebee bt e beeteebeebeenbeenbeebeenteenbeenbeenbeenseenseaneean 60
asynFloatXXXArray device support (where XXX=32 OF 64)......ccccereereerirniienieeieerieerieeteesie et eee e 61
OCEEL AEVICE SUDPOIT. . uveeuveeuteeteeteeteenteenteesteenteebeebeebeebeenbeeabeenbeeaseenseenteenbeembeembeembeenseenteenbeenbeenseanseenseeneean 61
R eTe e 11 P2 01 TR 62
asynRecord: Generic EPICS RecOrd SUPDOIL......ccueerteertiiriieiieiieiteeieeie ettt et 63
20 1110) [OSSPSR 64
B S AN o] 0] (o721 o) 1 SO OSSP URUSSR 66
ASYIIGDID . ¢ttt ettt b et e e b e bt e bt e bt et e e bt e bt e bt e bt e bt e bt e te e bt e be e beenbeenteeneean 69
ASYNGDIDDIIIVEIN. ettt ettt et ettt ettt et et et et et et s 69
P10 1615 1o FO OO OO OO RO ORI 70
ASYIIGDIDPOTE ...ttt ettt ettt et e bt e bt e bt et et e e be e bt et e beenteeneean 71
2oy A B W A=) o 71
| o721 TS w21 B) o APPSR 71
TCP/IP OF UDP/IP POIL....ccceieeueeeieeeeeeeeieeeeeeeeeteee e e e e e eeate e e e e e eesaaaaeeeeeessssasaaeeeesssnsaesreseessnssaseeeeessnnns 73
O 27 0 SN TS = SRR 74
Y€ 1 PPN 75
50010 €10 Lo S OSSR S 77
Green Springs TPABE.........o ottt ettt ettt ettt e bt e bt e bt e bt et et et e e bt e bt e bt e beenteeneean 78
National Instruments GPIB-TOT4D........uuuuiiiiiiiiieeieeeeeeeeeeeeeee e eeeeiaee e e e e eeaaae e e e e s eestaaeeeeessennaaaeeeeeseanns 78
USB TMC (Test and Measurement Class) dIIVET.........cocuvuveeieeiieiieeieeeeeeeeieeeeeeeeeereeeeeeeeeesaaeeeeeeseenns 79
PN 6 LTS Te) 172 B B A2 v PPN 80
aSyNPOTtDIIVEr Ctt DASE ClASS ... eeuteetieiieiieie ettt ettt et ettt et et et et e e e eenteeneean 81
ASYNPOTECHENE Cb ClASSES . ¢ euvteuteeuteetierteeite ettt et et e e bt e bt e bt et e et e e beebe e bt ebe e bt em bt enteenbeenbeenbeenbeenbeenseaneean 81
DIagNOSHIC ATAS .teettetiitieit ettt ettt e bt e bt e bt e s bt e bt esbe e s bt e bt e bt e bt e bt e bt e eb e e bt e bt e bt e ebeeebeenbeenbeennes 81

asynDriver

Table of Contents

asynDriver: Asynchronous Driver Support
iocsh Commands

.. 81
INStAll AN BUIL. ...evvviiiiiiiiieeiie ettt e e e et e e e e e e e et e e s s eesaaeeeeeeee e naaaaeeeeessnnnraaeeeeesannns 83
Install and Build aSYNDIIVEL.ceoutetietieiieeee ettt et ettt et e e et be et ebe e e e s 83
Using asynDriver Components with an EPICS iocCore Application........ccceerveereeereeneeneeneeneeneennes 83
LICENSE AGIEOIMIEIIL. ..ceuveeutieutieteetiettettettenteesteesteeateebe e beebee bt eabeebe e bt e bt e bt enbeeabeeabeenbe e bt enbeesbeeabeenbeenbeenses 84

asynDriver

asynDriver: Asynchronous Driver Support
Release 4-30
Mark Rivers, Eric Norum, and Marty Kraimer

August 23, 2016

Other Contributers

Gasper Jansa (cosyLab) - linuxGpib support.

License Agreement

This product is available via the open source license described at the end of this document.

Contents

Purpose

Status

Acknowledgments

Overview of asynDriver

Theory of Operation

asynDriver Structures and Interfaces
Standard Message Based Interfaces
Standard Register Based Interfaces
asynStandardInterfacesBase
Standard Interpose Interfaces
Generic Device Support for EPICS records
asynRecord: Generic Record Support
Example

Test Example

asynGpib
Port Drivers

e | ocal Serial Port

e TCP/IP or UDP/IP Port

e TCP/IP or UDP/IP Server

e USB TMC (Test and Measurement Class)
e VXI-11

e Linux-Gpib

e Green Springs IP488

* National Instruments GPIB-1014D

e Additonal Drivers

asynPortDriver C++ base class
asynPortClient C++ classes
Diagnostic Aids

asynDriver: Asynchronous Driver Support

asynDriver

Install and Build

Purpose

asynDriver is a general purpose facility for interfacing device specific code to low level drivers. asynDriver
allows non-blocking device support that works with both blocking and non-blocking drivers.

A primary target for asynDriver is EPICS I0C device support but, other than using libCom, much of it is
independent of EPICS.

asynDriver has the following key concepts:
¢ Device support communicates with drivers via interfaces

Drivers take care of the details of how to communicate with a device and implement interfaces for use by
device support. Interfaces are defined for both message and register based devices. In the past when
support was written for a new type of device, device support for standard EPICS records had to be written
in addition to the driver support. Now a driver just implements one or more of the standard interfaces.

¢ A port provides access to device instances

A port, which has a portName, identifies a communication path to one or more device instances. For
example a GPIB port can have up to 15 devices connected to it. An RS232 port communicates with a
single device. Drivers register a port. Device support connects to a port.

¢ asynManager controls access to a port

asynManager, a component of asynDriver, provides exclusive access to a driver via calls to
queueRequest, lockPort/unlockPort, and queueLockPort/queueUnlockPort. Once device support has
access, it can make an arbitrary number of calls to the driver knowing that no other support can call the
driver. Device and driver support do not need to implement queues or semaphores since asynManager
does this for them.

¢ asynTrace provides a general purpose diagnostic facility

Rules are defined for providing diagnostic messages. Provided device and driver support follow the rules,
a user can obtain several levels of diagnostic information that can be displayed on the console, written to
a file, or sent to the EPICS errlog facility.

¢ asynRecord - Generic access to an device/port

asynRecord is an EPICS record and set of associated MEDM displays that provide access to:
¢ A port or a device connected to a port
The port or port,addr can be changed dynamically. Thus with one asynRecord in an I0C, it is
possible to talk to any device that has an asyn compatible driver.
¢ asynTrace - All asynTrace options can be controlled with the asynRecord.

¢ Connection Management

Display and change connection, enable, and autoConnect state
¢ Standard interfaces

2 Contents

asynDriver

These can be used to communicate with devices. For example if a new instrument arrives that has
a serial, GPIB, or ethernet port, then it is often possible to communicate with it just by attaching
an asynRecord to it.

¢ Extensive Serial Support

asynDriver provides many facilities for communicating with RS232, RS485, GPIB, and ethernet.

Status

This version provides

¢ asynManager: the software layer between device support and drivers.

¢ asynRecord: EPICS record support that provides a generic interface to asynManager, asynCommon,
asynOctet, asynGpib, and other interfaces.

¢ asynPortDriver: a C++ base class that makes it easy to write asyn drivers, with much of the boilerplate
asyn code handled in the base class methods.

¢ asynPortClient: C++ classes that makes it easy to write C++ asyn clients that communicate directly with
asyn port drivers without running an EPICS 10C.

e standard interfaces: Standard message and register based interfaces are defined. Low Level Drivers
implement standard interfaces. Device support communicates with low level drivers via standard
interfaces.

¢ devEpics: Generic device support for EPICS records.

¢ devGpib: EPICS device support that replaces the device support layer of the Winans/Franksen gpibCore
support.

¢ asynGpib: a replacement for the drvGpibCommon layer of the Franksen gpibCore support.

¢ drvAsynSerialPort: Support for devices connected to serial ports.

¢ drvAsynlIPPort: Support for TCP/IP and UDP/IP socket communication, including serial devices accessed
via Ethernet/Serial converter boxes.

¢ drvAsynIPServerPort: Support for asyn socket servers that are accessed from remote clients. TCP/IP
sockets and UDP are supported.

¢ VXI-11: A replacement for the VXI-11 support of the Franksen gpibCore support.

¢ Linux-gpib: Support for the Linux GPIB Package library.

¢ gsIP488: A low level driver for the Greensprings IP488 Industry Pack module.

¢ nil014: A low level driver for the National Instruments VME 1014D.

¢ Serial Bus Support: The asynLockPortNotify interface was added to make it easier to support serial bus
drivers that use the standard serial support.

The following are some of the existing EPICS general purpose device support systems that have been converted
to use asynDriver.

¢ StreamDevice. This is the protocol file-based support for serial/GPIB/CAN from Dirk Zimoch.

¢ gpibCore. This is the operating-system-independent version of the Winans/Franksen GPIB support.

¢ synApps (The APS BCDA synchrotron applications). The mca, dxp, motor, Ip330, IpUnidig, DAC128V
and quadEM applications in this package have all been converted to asyn. The serial and GPIB modules
in this package are no longer needed, because the asyn record replaces them. The areaDetector module
was written to use asyn, and was the original motivation for the development of asynPortDriver.

Purpose 3

asynDriver
Acknowledgments

The idea of creating asynDriver resulted from many years of experience with writing device support for serial and
GPIB devices. The following individuals have been most influential.

John Winans
John provided the original EPICS GPIB support. Databases using John's support can be used without
modification with devGpib. With small modifications, device support modules written for John's support
can be used.

Benjamin Franksen
John's support only worked on vxWorks. In addition, the driver support was implemented as a single
source file. Benjamin defined an interface between drvCommon and low level controllers and split the
code into drvGpib and the low level drivers. He also created the support for drvVxill.

Eric Norum
Eric started with Benjamin's code and converted it to use the Operating System Independent features of
EPICS 3.14.

Marty Kraimer
Marty started with Eric's version and made changes to support secondary addressing; and to replace ioctl
with code to support general bus management, universal commands, and addressed commands.

Pete Owens
Pete, for the Diamond Light Source, did a survey of several types of device/driver support packages for
serial devices. Diamond decided to use the StreamDevice support developed by Dirk Zimoch.

Dirk Zimoch
Dirk developed StreadDevice, which has a single device support model, but supports arbitrary low level
message based drivers, i.e. GPIB, serial, etc.

Jun-ichi Odagare
Jun-ichi developed NetDev, a system that provides EPICS device support for network based devices. It
has a single device support model, but provides a general framework for communicating with network
based devices.

Mark Rivers
Mark became an active developer of asynDriver soon after he started converting SynApps to use
asynDriver. He soon pushed to have asynDriver support synchronous drivers, support register based
drivers, and support interrupts. With these additions asynDriver is a framework for interfacing to a large
class of devices instead of just message based asynchronous devices.

Yevgeny A. Gusev
Yevgeny has found bugs and suggested improvements in the way asynManager handles queue timeouts
and cancels. He provides an expert and welcome set of eyes to look at difficult code!!!

Overview of asynDriver

Definitions
asynDriver is a software layer between device specific code and drivers that communicate with devices. It
supports both blocking and non-blocking communication and can be used with both register and message based

devices. asynDriver uses the following terminology:

e interface

4 Acknowledgments

asynDriver

All communication between software layers is done via interfaces. An interface definition is a C language
structure consisting entirely of function pointers. An asynDriver interface is analogous to a C++ or Java
pure virtual interface. Although the implementation is in C, the spirit is object oriented. Thus this
document uses the term "method" rather than "function pointer".

® port

A physical or logical entity which provides access to a device. A port provides access to one or more
devices.
e portDriver

Code that communicates with a port.
e portThread

If a portDriver can block, a thread is created for each port, and all I/O to the portDriver is done via this
thread.
® device

A device (instrument) connected to a port. For example a GPIB interface can have up to 15 devices

connected to it. Other ports, e.g. RS-232 serial ports, only support a single device. Whenever this

document uses the word device without a qualifier, it means something that is connected to a port.
e device support

Code that interacts with a device.
e synchronous

Support that does not voluntarily give up control of the CPU.
¢ asynchronous

Support that is not synchronous. Some examples of asynchronous operations are epicsThreadSleep,
epicsEventWait, and stdio operations. Calls to epicsMutexTake are considered to be synchronous
operations, i.e. they are permitted in synchronous support.

¢ asynDriver

The name for the support described in this manual. It is also the name of the header file that describes the
core interfaces.
¢ asynManager

An interface and the code which implements the methods for interfaces asynManager and asynTrace.
¢ asynchronous Driver

A driver that blocks while communicating with a device. Typical examples are serial, gpib, and network
based drivers.
¢ synchronous Driver

A driver that does not block while communicating with a device. Typical examples are VME register
based devices.

® Message Based Interfaces
Interfaces that use octet arrays for read/write operations.

® Register Based Interfaces

Definitions 3

asynDriver

Interfaces that use integers or floats for read/write operations.
® interrupt

As implemented by asynManager, interrupt just means "I have a new value for port, address".

Synchronous/asynchronous and message/register are orthogonal concepts. For example a register based driver can
be either synchronous or asynchronous. The terminology register vs message is adapted from VXI.

Standard interfaces are defined so that device specific code can communicate with multiple port drivers. For
example if device support does all its communication via reads and writes consisting of 8 bit bytes (octets), then it
should work with all port drivers that support octet messages. If device support requires more complicated
support, then the types of ports will be more limited. Standard interfaces are also defined for drivers that accept 32
bit integers or 64 bit floats. Additional interfaces can be defined, and it is expected that additional standard
interfaces will be defined.

One or more devices can be attached to a port. For example, only one device can be attached to an RS-232 port,
but up to 15 devices can be attached to a GPIB port.

Multiple layers can exist between device specific code and a port driver. A software layer calls interposelnterface
in order to be placed between device specific code and drivers. For more complicated protocols, additional layers
can be created. For example, GPIB support is implemented as an asynGpib interface which is called by user code,

and an asynGpibPort interface which is called by asynGpib.

A driver normally implements multiple interfaces. For example asynGpib implements asynCommon, asynOctet,
and asynGpib.

asynManager uses the Operating System Independent features of EPICS base. It is, however, independent of
record/device support. Thus, it can be used by other code, e.g. a sequence program.

Standard Interfaces
These are interfaces provided by asynManager or interfaces implemented by all or most port drivers.
The interfaces are:
asynManager provides services for communicating with a device connected to a port.
asynCommon is an interface that must be implemented by all low level drivers. The methods are:
e report - Report status of port.
e connect - Connect to the port or device.
e disconnect - Disconnect from the port or device.
asynTrace is an interface for generating diagnostic messages.
asynLockPortNotify is an interface that is implemented by a driver which is an asynUser of another driver. An
example is a serial bus driver that uses standard serial support. asynManager calls asynLockPortNotify whenever

it locks or unlocks the port.

asynDrvUser is an interface for communicating information from device support to a driver without the device

6 Standard Interfaces

asynDriver

support knowing any details about what is passed.

Generic Interfaces

In addition to asynCommon and optionally asynDrvUser, port drivers can implement one or more of the following
message and/or register based interfaces.

asynOctet methods for message based devices

asynFloat64 methods for devices that read/write IEEE float values

asynFloat32Array methods for devices that read/write arrays of IEEE 32-bit float values

asynFloat64 Array methods for devices that read/write arrays of IEEE 64-bit float values

asynInt32 methods for devices that read/write integer values. Many analog I/O drivers can use this interface.
asynInt8 Array methods for devices that read/write arrays of 8-bit integer values

asynlnt16Array methods for devices that read/write arrays of 16-bit integer values

asynInt32 Array methods for devices that read/write arrays of 32-bit integer values

asynUInt32Digital methods for devices that read/write arrays of digital values. This interface provides a mask to
address individual bits within registers.

asynGenericPointer methods for devices that read/write arbitrary structures, passed via a void* pointer. The client
and the server of course need to agree on the structure type being pointed to.

asynEnum methods for devices to define enum strings, values, and severities.

asynOption methods for device configuration using key/value pairs.

asynManager

asynManager is an interface and associated code. It is the "heart" of asynDriver since it manages the interactions
between device support code and drivers. It provides the following services:

® reporting

Method: report
¢ asynUser creation

Methods: createAsynUser, duplicateAsynUser, freeAsynUser

An asynUser is a "handle" for accessing asynManager services and for calling interfaces implemented by
drivers. An asynUser must only be created via a call to createAsynUser or duplicateAsynUser since
asynManager keeps private information for each asynUser. freeAsynUser puts the asynUser on a free list
rather than calling free. Clients can continually create and free asynUsers quickly and without
fragmenting memory.

Generic Interfaces 7

asynDriver

The call to createAsynUser specifies a processCallback and a timeoutCallback. These are the callbacks
that will be called as a result of a queueRequest.

An asynUser should not be shared between parts of code that can simultaneously access a driver. For
example device support for standard EPICS records should create an asynUser for each record instance.
Basic asynUser services

Methods: connectDevice, disconnect, findInterface
These methods should only be called by the code that created the asynUser.

After an asynUser is created the user calls connectDevice. The user is connected to a port driver that can
communicate with a device. findInterface is called for each interface the user requires. disconnect is
called when the user is done with the device.

Queuing services

Methods: queueRequest, cancelRequest, lockPort, unlockPort, queueLockPort, queueUnlockPort,
blockProcessCallback, unblockProcessCallback

queueRequest is a request to call the processCallback specified in the call to createAsynUser. Most
interface methods must only be called from processCallback via a call to queueRequest or between calls
to lockPort/unlockPort.. Exceptions to this rule must be clearly documented (a common exception are
methods registerInterruptUser/cancellnterruptUser).

queueRequest semantics differ for ports that can block and ports that do not block

When registerPort is called by a driver that can block, a thread is created for the port. A set of queues,
based on priority, is created for the thread. queueRequest puts the request on one of the queues. The port
thread takes the requests from the queues and calls the associated callback. Only one callback is active at
a time.

When registerPort is called by a driver that does not block, a mutex is created for the port. queueRequest
takes the mutex, calls the callback, and releases the mutex. The mutex guarantees that two callbacks to a
port are not active at the same time.

lockPort is a request to lock all access to low level drivers until unlockPort is called. If the port blocks
then lockPort and all calls to the port driver may block. lockPort/unlockPort are provided for use by code
that is willing to block or for communication with synchronous ports. A call to lockPort locks all
addresses associated with a multi-address port. Prior to asyn R4-14 pasynManager->lockPort()
immediately took the port mutex when it was available, rather than queueing a request to take the mutex.
From asyn R4-14 to R4-20 lockPort queues a request to access the port and then blocks until the queue
request callback runs in the portThread. When the queue request runs, the thread that called
pasynManager->lockPort() executes, and the portThread blocks, until pasynManager->unlockPort() is
called. In R4-21 the queued lockPort and unlockPort functions were renamed to queueLockPort and
queueUnlockPort, and the original lightweight lockPort and unlockPort functions were restored.

blockProcessCallback is a request to prevent acccess to a device or port by other asynUsers between
queueRequests. blockProcessCallback can be called from a processCallback or when the asynUser has no
request queued. When called from processCallback blocking starts immediately, otherwise blocking starts
the next time processCallback is called. Blocking means that no other asynUser's processCallback will be
called until unblockProcessCallback is called. blockProcessCallback only works with drivers that can

asynManager

asynDriver

block and an error is returned if it is called for non-blocking drivers.
® Basic Driver services

Methods: registerPort,registerInterface
registerPort is called by a portDriver. registerInterface is called by a portDriver or an interposelnterface.

Each port driver provides a configuration command that is executed for each port instance. The
configuration command performs port specific initializations, calls registerPort, and registerInterface for
each interface it implements.

e Attribute Retrieval

Methods: isMultiDevice, canBlock, getAddr, getPortName, isConnected, isEnabled, isAutoConnect

These methods can be called by any code that has access to the asynUser
¢ Connection services

Methods: enable,autoConnect,setAutoConnectTimeout
These methods can be called by any code that has access to the asynUser.

These methods can be called to set the enable and autoConnect settings for a port and/or device. If
autoConnect is true then asynManager does the following:

¢ When the port registers its asynCommon interface, asynManager queues a connection request. It
then waits for a short time for the connection callback to complete. The default time is 0.5
seconds, but this time can be changed with a call to the function
pasynManager->setAutoConnectTimeout(double timeout). This function can be accessed from
the iocsh shell with the asynSetAutoConnectTimeout(double timeout) command. This short
timeout is designed to allow devices time to connect if they are available, but not to excessively
slow down booting of the IOC by waiting, for example, for the system timeout on TCP
connections. Note that this means that it is very likely that the pasynCommon->connect() call will
occur as soon as the asynCommon interface is registered, which means that the driver must have
already done all initialization required for the asynCommon->connect() callback before it
registers the asynCommon interface. If the port does not connect initially, or if it subsequently
disconnects, then asynManager will queue a connection request every 20 seconds. If autoConnect
is true and port/device is enabled but the device is not connected, then queueManager calls calling
asynCommon:connect just before it calls processCallback.

e Exception services

Methods: exceptionCallbackAdd, exceptionCallbackRemove, exceptionConnect, exceptionDisconnect

Device support code calls exceptionCallbackAdd and exceptionCallbackRemove. The complete list of
exceptions is defined in asynDriver.h as "enum asynException".

Whenever a port driver connects or disconnects, normally as a result of a call to asynCommon:connect or
asynCommon:disconnect, it must also call exceptionConnect or exceptionDisconnect.

e Interrupt services

Methods: registerInterruptSource, getlnterruptPvt, createInterruptNode, freelnterruptNode,
addInterruptUser, removelnterruptUser, interruptStart, interruptEnd

asynManager 9

10

asynDriver

Interrupt just means: "I have a new value." Many asyn interfaces, e.g. asynInt32, provide interrupt
support. These interfaces provide methods addInterruptUser and removelnterruptUser. Device support
calls addInterruptUser if it wants to be called whenever an interrupt occurs. Drivers or other code that
implements the interface calls the registered users when it has new data. asynManager provides services
that help drivers implement thread-safe support for interrupts.

A driver that supports interrupts calls registerInterruptSource for each interface that has associated
interrupts. It calls interruptStart to obtain a list of all registered users and interruptEnd after it calls the
registered users. The driver is also responsible for calling addInterruptUser and removelnterruptUser.

If any calls are made to addInterruptUser or removelnterruptUser between the calls to interruptStart and
interruptEnd, asynManager puts the request on a list and processes the request after interruptEnd is called.

Many standard interfaces, e.g. asynInt32, provide methods registerInterruptUser, cancellnterruptUser.
These interfaces also provide an auxilliary interface, e.g. asynInt32Base, and code which implements
registerInterruptUser and cancellnterruptUser.

On operating systems like vxWorks or RTEMS interruptStart,interruptEnd MUST NOT be called from
interupt level.
Timestamp services

Methods: updateTimeStamp, getTimeStamp, setTimeStamp, registerTimeStampSource,
unregisterTimeStampSource.

These methods provide support for setting a timestamp for a port. This timestamp is typically used to set
the pasynUser->timestamp field that is passed to device support on read or callback operations. Device
support uses the pasynUser->timestamp field to set the record TIME field. This will then be the record
timestamp if the record TSE field is -2. asynManager provides a default timestamp source function which
just calls epicsTimeGetCurrent(). However, registerTimeStampSource can be used to supply a different
user-provided timestamp source function, for example one that calls epicsTimeGetEvent(), or some other
site-specific timestamp source. unregisterTimeStampSource reverts to the default timestamp source in
pasynManager.

General purpose freelist service

Methods: memMalloc, memFree

These methods do not require an asynUser. They are provided for code that must continually allocate and
free memory. Since memFree puts the memory on a free list instead of calling free, they are more
efficient that calloc/free and also help prevent memory fragmentation.

Interpose service

Method: interposelnterface

Code that calls interposelnterface implements an interface which is either not supported by a port driver
or that is "interposed" between the caller and the port driver. For example asynInterposeEos interposes

asynOctet. It performs end of string processing for port drivers that do not support it.

interposelnterface is recursive, i.e. an arbitrary number of interpose layers can exist above a single
port,addr.

asynManager

asynDriver

Multiple Device vs Single Device Port Drivers

When a low level driver calls registerPort, it declares if it handles multiple devices. This determines how the addr
argument to connectDevice is handled and what getAddr returns.

e multiDevice false

The addr argument to connectDevice is ignored and getAddr always returns -1
¢ multiDevice true

If connectDevice is called with addr<0, the connection is to the port and getAddr always returns -1. If
addr>=0, then the caller is connected to the device at the specified address. getAddr will return this

address. An asynUser connected to the port can issue requests that affect all address on the port. For
example disabling access to the port prevents access to all addresses on the port.

Connection Management
asynManager keeps track of the following states:
® connection

Is the port or device connected? This state is initialized to disconnected.
® enabled

Is the port or device enabled? This state is initialized to enabled.
¢ autoConnect

Does asynManager automatically attempt to connect if it finds the port or device disconnected? This is
initialized to the state specified in the call to registerPort.

If the port does not support multiple devices, then port and device status are the same. If the port does support
multiple devices, then asynManager keeps track of the states for the port and for every device connected to the
port.

Whenever any of the states change for a port or device, then all users that previously called
exceptionCallbackAdd for that port or device are called.

Low level drivers must call pasynManager:exceptionConnect whenever they connect to a port or port,addr and
exceptionDisconnect whenever they disconnect.

Protecting a Thread from Blocking

The methods asynManager:report and asynCommon:report can be called by any thread, but the caller is blocked
until the report finishes. lockPort, unlockPort, queueLockPort, queueUnlockPort, and most port methods may
block. The other asynManager methods can be called by any thread including portThread. None of these methods
block.

Unless stated otherwise the methods for other interfaces must only be called by processCallback or by calls
between lockPort/unlockPort, or queueLockPort/queueUnlockPort.

Multiple Device vs Single Device Port Drivers 11

asynDriver

Interface methods registerInterruptUser and cancellnterruptUser must never block. The registerInterruptUser
callback must not block because it could be called by a non blocking driver.

portThread

If a driver calls asynManager:registerPort with the ASYN_CANBLOCK attributes bit set, then asynManager
creates a thread for the port. Each portThread has its own set of queues for the calls to queueRequest. Four queues
are maintained. One queue is used only for asynCommon:connect and asynCommon:disconnect requests. The
other queues provide different priorities: low, medium, and high. queueRequests to any queue other then the
connection queue will be rejected if the port is not connected. portThread runs forever implementing the
following algorithm:

1. Wait for work by calling epicsEventMustWait. Other code such as queueRequest call epicsEventSignal.
2. If the port is disabled, go back to 1.
3. For every element in queue, asynQueuePriorityConnect:
¢ Removes the element from the queue.
¢ Calls the user's callback
4. For each element of the queues asynQueuePriorityHigh, ...,asynQueuePriorityLow.
¢ If disabled, skip this element.
¢ If not connected and autoConnect is true for the device, then attempt to connect to the device.
¢ If not connected, skip this element.
¢ If blocked by another thread, skip this element.
¢ If not blocked and user has requested blocking, then blocked.
¢ Remove from queue and:
0 lock port
0 call user callback
¢ unlock port

The actual code is more complicated because it unlocks before it calls code outside asynManager. This means that
the queues can be modified and exceptions may occur.

Theory of Operation

Initialization

During initialization, port drivers register each communication port as well as all supported interfaces.

User code creates an asynUser, which is a "handle" for accessing asynDriver facilities, by calling
pasynManager->createAsynUser (processCallback, timeoutCallback) ;

An asynUser has the following features:

¢ An asynUser is the means by which asynManager manages multiple requests for accessing a port.

¢ processCallback,which is used by queueRequest described below, is the addresss of a user supplied
callback routine.

¢ timeoutCallback is the address of caller supplied callback that will be called if a queueRequest remains on
the queue too long.

¢ Device support code should create an asynUser for each "atomic" access to low level drivers, i.e. a set of
calls that must not be interlaced with other calls to the low level drivers. For example device support for

12 Protecting a Thread from Blocking

asynDriver

EPICS record support should create an asynUser for each record instance.
¢ Device support code should NOT try to share an asynUser between multiple sources of requests for
access to a port. If this is done then device support must itself handle contention issues that are already
handled by asynManager.
User code connects to a low level driver via a call to

status = pasynManager->connectDevice (pasynUser, portName, addr) ;

This call must specify the name of the port and the address of the device. It then calls findInterface to locate the
interfaces with which it calls the driver. For example:

pasynInterface = pasynManager->findInterface (pasynUser,asynOctetType,1);
Requesting access to a port
User code can request access to a port by two methods:

® queueRequest -

The processCallback passed to createAsynUser makes calls to the port interfaces.
¢ JlockPort/unlockPort, queueL.ockPort/queueUnlockPort -

The caller can make calls to the port interfaces while the lock is held. These calls and calls to the port

may block and thus should NOT be used by code that should not block, e.g. synchronous device support
for EPICS records.

queueRequest - Flow of Control
User code requests access to a port by calling:

status = pasynManager->queueRequest (pasynUser,priority,timeout);
This results in either processCallback or timeoutCallback being called. Most requests to a port must be made from
processCallback. queueRequest does not block. If queueRequest is called for a port that can block the request is
queued to a thread dedicated to the port. If queueRequest is called for a port does not block it just calls
processCallback. guarantee is valid only if low level drivers are only accessed by calling queueRequest,
lockPort/unlockPort, and/or queueLockPort/queueUnlockPort
The following examples are based on EPICS 10C record/device support.

The first example shows access to a port that can block.

Initialization 13

Code running in
application thread

asynDriver

Code running in
port thread

Record Support

- e
(:)

‘\,_E Record Device Support] "y

) 5 /
Work Queue 6

ASYN
a
C LTI

Low-level Driver ;

-

Figure 1: Asynchronous Control Flow

The sequence of record device support events that occurs starting with an application thread is pictured above in
Figure 1, and explained below in the following steps:

1. Record processing calls device support with PACT 0 (Processing is not active).

2. Device support calls queueRequest.

3. queueRequest places the request on the driver work queue. The application thread is now able to go on
and perform other operations. Subsequent operations for this I/O request are handled in the port driver
thread.

4. The portThread removes the I/O request from the work queue.

5. The portThread calls the processCallback located in Record device support.

6. processCallback calls the low-level driver. The low-level driver read or write routine blocks until the I/O
completes or until a timeout occurs. The low-level driver routine returns the results of the I/O operation to
processCallback.

7. processCallback requests that the record be processed. NOTE: The process request will be made by one
of the standard callback requests rather than the port thread.

8. Record support calls device support again, this time with PACT 1(processing is active). Device support
updates fields in the record and returns to record support which completes record processing.

The second example shows access to a port that cannot block.

14 queueRequest - Flow of Control

asynDriver

All code runs in
application thread

Record Support

PG S i
= D

Record Device Support 5

A 3/’

ASYN

Low-level Driver é

Figure 2: Synchronous Control Flow

The sequence of record device support events that occurs starting with an application thread is pictured above in
Figure 2, and explained below in the following steps:

1. Record processing calls device support.

2. Device support calls queueRequest.

3. Since the port is synchronous, i.e. can not block, queueRequest locks the port and then calls the
processCallback.

4. processCallback calls the low-level driver read or write routine. The low-level driver routine returns the
results of the I/O operation to processCallback.

5. processCallback returns to queueRequest, which unlocks the port and returns to device support, which
returns to record support, which completes record processing.

asynDriver Structures and Interfaces

asynDriver.h describes the following:

¢ asynStatus - An enum that describes the status returned by many methods.

¢ asynException - An enum that describes exceptions.

¢ asynQueuePriority - An enum that describes the queue priorities.

e asynUser - A struture that contains generic information and is the "handle" for calling most methods.
e asynlnterface - a structure that describes an interface.

e userCallback - a typedef for the user process callback function described above.

e exceptionCallback - a typedef for a user callback to be called when exceptions occur.

e timeStampCallback - a typedef for a user callback function that will be called by updateTimeStamp.
e asynManager - An interface for communicating with asynDriver.

¢ asynCommon - An interface providing methods that must be implemented by all low level drivers.

asynDriver Structures and Interfaces 15

asynDriver

e asynTrace - An interface plus associated functions and definitions that implement the trace facility.

asynStatus

Defines the status returned by most methods. If a method returns a status other than asynSuccess, and one of the
arguments to the method is pasynUser, then the method is expected to write a message into
pasynUser->errorMessage.

typedef enum {
asynSuccess,asynTimeout, asynOverflow, asynError, asynDisconnected, asynDisabled
}asynStatus;

asynStatus
asynSuccess The request was successful.
asynTimeout The request failed with a timeout.

The driver has lost input data. This can happen if an internal buffer or the user supplied buffer
asynOverflow is too small. Whenever possible, low level drivers should be written so that the user can read
input in small pieces.

asynError Some other error occured.

asynDisconnected |The request failed because the port is not connected.

asynDisabled The request failed because the port or device is disabled.

asynException

Defines the exceptions for method exceptionOccurred

typedef enum {
asynExceptionConnect, asynExceptionEnable, asynExceptionAutoConnect,
asynExceptionTraceMask, asynExceptionTraceIOMask, asynExceptionTraceInfoMask,
asynExceptionTraceFile, asynExceptionTraceIOTruncateSize

} asynException;

asynException

asynExceptionConnect The connection state of the port or device has changed.
asynExceptionEnable The enable state of the port or device has changed.
asynExceptionAutoConnect The autoConnect state of the port or device has changed.
asynExceptionTraceMask The traceMask for the port or device has changed.
asynExceptionTracelOMask The tracelOMask for the port or device has changed.
asynExceptionTracelnfoMask The traceInfoMask for the port or device has changed.
asynExceptionTraceFile The trace file for the port or device has changed.
asynExceptionTracelOTruncateSize |The tracelOTruncateSize for the port or device has changed.

asynQueuePriority

This defines the priority passed to queueRequest.

typedef enum {
asynQueuePriorityLow, asynQueuePriorityMedium, asynQueuePriorityHigh,
asynQueuePriorityConnect

16 asynStatus

asynDriver

}asynQueuePriority;

asynQueuePriority

asynQueuePriorityLow Lowest queue priority.

asynQueuePriorityMedium |Medium queue priority.

asynQueuePriorityHigh High queue priority.

asynQueuePriorityConnect

Queue a connect or disconnect request. This priority must be used for and only for
connect/disconnect requests.

asynUser

Describes a structure that user code passes to most asynManager and driver methods. Code must allocate and free
an asynUser by calling asynManager:createAsynUser (or asynManager:duplicateAsynUser) and
asynManager:freeAsynUser.

typedef struct asynUser {

char *errorMessage;

int errorMessageSize;

/* timeout must be set by the user */

double timeout; /* Timeout for I/O operations*/

void *userPvt;

void *userData;

/* The following is for use by driver */

void *drvUser;

/* The following is normally set by driver via asynDrvUser->create() */
int reason;

epicsTimeStamp timestamp;
/* The following are for additional information from method calls */

int

int

int
}asynUser;

asynUser

auxStatus; /* For auxillary status*/
alarmStatus; /* Typically for EPICS record alarm status */
alarmSeverity; /* Typically for EPICS record alarm severity */

errorMessage

When a method returns asynError it should put an error message into errorMessage via a call
to:

epicsSnprintf (pasynUser—->errorMessage,pasynUser—->errorMessageSize,

"<format>",...)

The error message should not end with (nor contain) a newline character sequence (e.g. \n).
It is up to user code to decide whether and how to display the error message. Keeping
newlines out of the error message make it easy for user code to embed the error message in
another message or output format.

errorMessageSize

The size of errorMessage. The user can not change this value.

timeout

The number of seconds before timeout for I/O requests. This is set by the user and can be
changed between calls to a driver. If a call to a low level driver results in the driver making
many /O requests this is the time for each I/O request.

The meaning is as follows:

asynQueuePriority 17

asynDriver

> (0.0 Wait for up to timeout seconds for the I/O to complete

= 0.0 Peform any I/O that can be done without blocking. Return timeout error if no I/O can be
done without blocking.

< 0.0 Infinite timeout. Wait forever for I/O to complete.

userPvt

For use by the user. The user should set this immediately after the call to
pasynManager->create AsynUser.

If this is changed while asynUser is queued, the results are undefined, e.g. it could cause a
crash.

userData

Also for use by the user.

drvUser

A driver can use this to hold asynUser specific data. The asynDrvUser interface is used for
communication between asynUser and the driver.

reason

Drivers and asynUsers can use this as a general purpose field. By convention it is used to
determine what "command" is being sent over a particular interface. For example an A/D
driver implementing the asynInt32 interface might define reason=0 to mean "return the A/D
conversion", while reason=1 might mean "return the amplifier gain". Typically drivers
implement the asynDrvUser interface, and use this to convert from descriptive strings for
commands (e.g. "DATA" or "GAIN" in this example) to the enum "reason". A driver that is
calling an interrupt users often uses reason to decide if the users callback should be called.
Values of reason less than 0 are reserved for standard meanings. For example
ASYN_REASON_SIGNAL is used to mean "out of band" request. The devGpib support uses
this to report SRQs.

timestamp

Devices which provide their own time stamps use this field to provide the time value for
records whose TSE field is set to "-2".

auxStatus

Any method can provide additional return information in auxStatus. The meaning is
determined by the method. Callbacks can use auxStatus to set record alarm status in device
support callback functions.

alarmStatus

Any method can provide additional return information in alarmStatus. The meaning is
determined by the method. Callbacks can use alarmStatus to set record alarm status in device
support callback functions.

alarmSeverity

Any method can provide additional return information in alarmStatus. The meaning is
determined by the method. Callbacks can use alarmSeverity to set record alarm severity in
device support callback functions.

asynlinterface

This defines an interface registered with asynPortManager:registerPort or asynManager:interposelnterface.

typedef struct asynInterface{
const char *interfaceType; /*For example, asynCommonType */
void *pinterface; /*For example, pasynCommon */
void *drvPvt;

}asynInterface;

asynlnterface

interfaceType

A character string describing the interface.

pinterface

A pointer to the interface. The user must cast this to the correct type.

18

asynUser

asynDriver

|drVPvt |F0r the exclusive use of the code that called registerPort or interposelnterface.

asynManager

This is the main interface for communicating with asynDriver.

/*registerPort attributes*/
#define ASYN_MULTIDEVICE 0x0001
#define ASYN_CANBLOCK 0x0002

/*standard values for asynUser.reason*/
#define ASYN_REASON_SIGNAL -1

typedef struct interruptNode({
ELLNODE node;
void *drvPvt;
}interruptNode;

typedef void (*userCallback) (asynUser *pasynUser);
typedef void (*exceptionCallback) (asynUser *pasynUser,asynException exception);

typedef void (*timeStampCallback) (void *userPvt, epicsTimeStamp *pTimeStamp) ;

typedef struct asynManager {

void (*report) (FILE *fp,int details,const char*portName);
asynUser * (*createAsynUser) (userCallback process,userCallback timeout);
asynUser * (*duplicateAsynUser) (asynUser *pasynUser,
userCallback queue,userCallback timeout);
asynStatus (*freeAsynUser) (asynUser *pasynUser);
void *(*memMalloc) (size_t size);
void (*memFree) (void *pmem, size_t size);
asynStatus (*isMultiDevice) (asynUser *pasynUser,
const char *portName,int *yesNo);
/* addr = (-1,>=0) => connect to (port,device) */
asynStatus (*connectDevice) (asynUser *pasynUser,
const char *portName, int addr);
asynStatus (*disconnect) (asynUser *pasynUser);
asynStatus (*exceptionCallbackAdd) (asynUser *pasynUser,
exceptionCallback callback);
asynStatus (*exceptionCallbackRemove) (asynUser *pasynUser);
asynInterface *(*findInterface) (asynUser *pasynUser,
const char *interfaceType,int interposeInterfaceOK) ;
asynStatus (*queueRequest) (asynUser *pasynUser,
asynQueuePriority priority,double timeout);
asynStatus (*cancelRequest) (asynUser *pasynUser,int *wasQueued);
asynStatus (*blockProcessCallback) (asynUser *pasynUser, int allDevices);
asynStatus (*unblockProcessCallback) (asynUser *pasynUser, int allDevices);
asynStatus (*lockPort) (asynUser *pasynUser);
asynStatus (*unlockPort) (asynUser *pasynUser);
asynStatus (*queueLockPort) (asynUser *pasynUser);
asynStatus (*queueUnlockPort) (asynUser *pasynUser);
asynStatus (*canBlock) (asynUser *pasynUser,int *yesNo);
asynStatus (*getAddr) (asynUser *pasynUser,int *addr);
asynStatus (*getPortName) (asynUser *pasynUser,const char **pportName);
/* drivers call the following*/
asynStatus (*registerPort) (const char *portName,
int attributes, int autoConnect,
unsigned int priority,unsigned int stackSize);
asynStatus (*registerInterface) (const char *portName,
asynInterface *pasynInterface);
asynStatus (*exceptionConnect) (asynUser *pasynUser);
asynStatus (*exceptionDisconnect) (asynUser *pasynUser);

/*any code

asynlinterface

can call the following*/

19

asynDriver

asynStatus (*interposelInterface) (const char *portName, int addr,

asynInterface *pasynInterface,

asynInterface **ppPrev);
asynStatus (*enable) (asynUser *pasynUser,int yesNo);
asynStatus (*autoConnect) (asynUser *pasynUser,int yesNo);
asynStatus (*isConnected) (asynUser *pasynUser,int *yesNo);
asynStatus (*isEnabled) (asynUser *pasynUser,int *yesNo);
asynStatus (*isAutoConnect) (asynUser *pasynUser,int *yesNo);
asynStatus (*setAutoConnectTimeout) (double timeout);
asynStatus (*waitConnect) (asynUser *pasynUser, double timeout);
/*The following are methods for interrupts*/
asynStatus (*registerInterruptSource) (const char *portName,

asynInterface *pasynlInterface, void **pasynPvt);
asynStatus (*getInterruptPvt) (asynUser *pasynUser,

const char *interfaceType, void **pasynPvt);
interruptNode * (*createlInterruptNode) (void *pasynPvt);
asynStatus (*freeInterruptNode) (asynUser *pasynUser, interruptNode *pnode);
asynStatus (*addInterruptUser) (asynUser *pasynUser,
interruptNode*pinterruptNode) ;
asynStatus (*removelInterruptUser) (asynUser *pasynUser,
interruptNode*pinterruptNode) ;

asynStatus (*interruptStart) (void *pasynPvt,ELLLIST **plist);
asynStatus (*interruptEnd) (void *pasynPvt);
/* Time stamp functions */
asynStatus (*registerTimeStampSource) (asynUser *pasynUser, void *userPvt, timeStampCallback callback);
asynStatus (*unregisterTimeStampSource) (asynUser *pasynUser);
asynStatus (*updateTimeStamp) (asynUser *pasynUser);
asynStatus (*getTimeStamp) (asynUser *pasynUser, epicsTimeStamp *pTimeStamp);
asynStatus (*setTimeStamp) (asynUser *pasynUser, const epicsTimeStamp *pTimeStamp);

const char *(*strStatus) (asynStatus status);

}asynManager;
epicsShareExtern asynManager *pasynManager;

asynManager

Reports status about the asynPortManager. If portName is non-NULL it
report reports for a specific port. If portName is NULL then it reports for each
registered port. It also calls asynCommon:report for each port being reported.

Creates an asynUser. The caller specifies two callbacks, process and timeout.
These callback are only called as a result of a queueRequest. The timeout
createAsynUser callback is optional. errorMessageSize characters are allocated for
errorMessage. The amount of storage can not be changed. This method doesn't
return if it is unable to allocate the storage.

Creates an asynUser by calling createAsynUser. It then initializes the new
asynUser as follows: The fields timeout, userPvt, userData, and drvUser are
initialized with values taken from pasynUser. Its connectDevice state is the
same as that for pasynUser.

duplicateAsynUser

Free an asynUser. The user must free an asynUser only via this call. If the
asynUser is connected to a port, asynManager:disconnect is called. If the
disconnect fails, this call will also fail. The storage for the asynUser is saved
on a free list and will be reused in later calls to createAsynUser or
duplicateAsynUser. Thus continually calling createAsynUser (or
duplicateAsynUser) and freeAsynUser is efficient.

freeAsynUser

memMalloc Allocate/Free memory. memMalloc/memFree maintain a set of freelists of
different sizes. Thus any application that needs storage for a short time can use

20 asynManager

membFree

asynDriver

memMalloc/memFree to allocate and free the storage without causing
memory fragmentation. The size passed to memFree MUST be the same as
the value specified in the call to memMalloc.

isMultiDevice

Answers the question "Does the port support multiple devices?" This method
can be called before calling connectDevice.

connectDevice

Connect the asynUser structure to a device specified by portName, addr. The
port Name is the same as that specified in a call to registerPort. The call will
fail if the asynUser is already connected to a device. If the port does not
support multiple devices, than addr is ignored. connectDevice only connects
the asynUser to the port driver for the portName,addr. The port driver may or
may not be connected to the actual device. Thus, connectDevice and
asynCommon:connect are completely different.

See the Theory of Operation section for a description of the difference
between single and multi-device port drivers.

disconnect

Disconnect the asynUser from the port,addr to which it is connected via a
previous call to connectDevice. The call will fail if the asynUser is queued or
locked, or has a callback registered via exceptionCallbackAdd. Note that
asynManager:disconnect and asynCommon:disconnect are completely
different.

exceptionCallbackAdd

Callback will be called whenever one of the exceptions defined by
asynException occurs. The callback can call isConnected, isEnabled, or
isAutoConnect to find the connection state. asynTrace provides methods to
find out the current trace settings.

exceptionCallbackRemove

Callback is removed. This must be called before disconnect.

Find a driver interface. If interposelnterfaceOK is true, then findInterface
returns the last interface registered or interposed. Otherwise, the interface
registered by registerPort is returned. It returns O if the interfaceType is not
supported.

The user needs the address of the driver's interface and of pdrvPvt so that calls
can be made to the driver. For example:

asynlnterface *pasynlInterface;

asynManager

findInterface asynOctet *pasynOctet;
void *pasynOctetPvt;
pasynInterface = pasynManager—->findInterface
pasynUser, asynOctetType, 1) ;
if (!pasynInterface) { /*error do something*/}
pasynOctet = (asynOctet *)pasynInterface->pinterface;
pasynOctetPvt = pasynInterface->pdrvPvt;
/* The following call must be made from a callback */
pasynOctet->read (pasynOctetPvt, pasynUser, ...
queueRequest When registerPort is called, the caller must specify if it can block, i.e. attribute

bit ASYN_CANBLOCK is set or cleared. If the port has been registered with
ASYN_CANBLOCK true then the request is put on a queue for the thread
associated with the queue. If the port has been registered with
ASYN_CANBLOCK false then queueRequest locks the port and calls the

21

asynDriver

proces