How to create EPICS device support for a simple serial or GPIB
device

W. Eric Norum
nor ume@ps. anl . gov

26th July 2004

1 Introduction

This tutorial provides step-by-step instructions on howrate EPICS support for a simple serial or GPIB (IEEE-488)
device. The steps are presented in a way that should makssthpe® to apply them in cookbook fashion to create
support for other devices. For comprehensive descriptiall dhe details of the 1/0 system used here, refer to the
asynDriver and devGpib documentation.

This document isn't for the absolute newcomer though. Yostrhave EPICS installed on a system somewhere and
know how to build and run the example application. In paticyou must have the following installed:

e EPICS R3.14.6 or higher.

e EPICS modules/soft/asyn version 3.2 or higher.

Serial and GPIB devices can now be treated in much the sameTieyEPICS 'asyn’ driver devGpib module can
use the low-level drivers which communicate with serialides connected to ports on the IOC or to Ethernet/Serial
converters or with GPIB devices connected to local I/0 carde Ethernet/GPIB converters.

| based this tutorial on the device support | wrote for a CVéémaCorporation AB300 filter wheel. You're almost
certainly interested in controlling some other device sa ymn’t be able to use the information directly. | chose
the AB300 as the basis for this tutorial since the AB300 hasrg kmited command set, which keeps this document
small, and yet has commands which raise many of the issuegdhdl have to consider when writing support for
other devices.

2 Determine the required I/O operations

The first order of business is to determine the set of operative device will have to perform. A look at the AB300
documentation reveals that there are four commands thatbeusipported. Each command will be associated with
an EPICS process variable (PV) whose type must be apprepoidgihe data transferred by the command. The AB300
commands and process variable record types | choose taateswith them are shown in table 1.

There are lots of other ways that the AB300 could be handlédnidht be useful, for example, to treat the filter
position as multi-bit binary records instead.

3 Create a new device support module

Now that the device operations and EPICS process variapéstiiave been chosen it’s time to create a new EPICS
application to provide a place to perform subsequent sofwavelopment. The easiest way to do this is with the
makeSupport.pl script supplied with the EPICS ASYN package

Table 1: AB300 filter wheel commands

CVI Laser Corporation AB300 filter wheel
Command EPICS record type
Reset longout

Go to new position| longout

Query position longin

Query status longin

Here are the commands | ran. You'll have to change thene/ EPI CS/ nodul es/ sof t / asyn to the path where
your EPICS ASYN driver is installed.

nor une> mkdir ab300
nor une> cd ab300
nor urre> /home/EPICS/modules/soft/asyn/bin/linux-x86/makeSugort.pl -t devGpib AB300

3.1 Make some changes to the files in configure/

Edit theconf i gur e/ RELEASE file which makeSupport.pl created and confirm that the ettéscribing the paths
to your EPICS base and ASYN support are correct. For exarhpietmight be:

ASYN=/ hone/ EPI CS/ nodul es/ soft/ asyn
EPI CS_BASE=/ hone/ EPI CS/ base

Edit theconf i gur e/ CONFI Gfile which makeSupport.pl created and specify the |IOC agchitres on which the ap-
plication is to run. | wanted the application to run as a 90ff| so | uncommented tlgROSS COVPI LER TARGET _ARCHS
definition and set the definition to be empty:

CROSS_COWPI LER_TARCGET_ARCHS =

3.2 Create the device support file

The contents of the device support file provide all the detafilthe communication between the device and EPICS.
The makeSupport.pl command created a skeleton device gdigpm AB300Sup/ devAB300. c. Of course, device
support for a device similar to the one you're working witloyides an even easier starting point.

The remainder this section describes the changes that | tnatle skeleton file in order to support the AB300 filter
wheel. You'll have to modify the steps as appropriate forrnyevice.

3.2.1 Declare the DSET tables provided by the device support

Since the AB300 provides only longin and longout recordstrobthe DSET _xxx define statements can be removed.
Because of the way that the device initialization is perfednyou must define an analog-in DSET even if the device
provides no analog-in records (as is the case for the AB300).

#defi ne DSET_AI devAi AB300
#def i ne DSET_LI devLi AB300
#define DSET_LO devLoAB300

3.2.2 Select timeout values

The default value ol MEW NDOW(2 seconds) is reasonable for the AB300, but | increasedah\ofTI MEOUT
to 5 seconds since the filter wheel can be slow in responding.

#def i ne TI MEQUT 5.0 /* 11O nmust conplete within this time */
#define TI MEWNDOW 2.0 /* Wait this long after device tinmeout */

3.2.3 Clean up some unused values

The skeleton file provides a number of example charactargstiirays. None are needed for the AB300 so | just
removed them. Not much space would be wasted by just leakiarg tn place however.

3.2.4 Declare the command array

This is the hardest part of the job. Here’s where you have todifpow to produce the command strings required to
control the device and how to convert the device response&iRICS process variable values.

Each command array entry describes the details of a sir@legdération type. The application database uses the index
of the entry in the command array to provide the link betwdengrocess variable and the 1/0 operation to read or
write that value.

The command array entries | created for the AB300 are sholawb@&he elements of each entry are described using
the names from the GPIB documentation.

Command array index 0 — Device Reset

{&DSET_LO, GPIBWRITE, IB Q LOW NULL, "\377\377\033", 10, 10,
NULL, O, O, NuULL, NULL, "\033"},

dset This command is associated with an longout record.

type A WRITE operation is to be performed.

pri This operation will be placed on the low-priority queue @ kequests.
cmd Because this is a GPIBWRITE operation this element is unused.

format The format string to generate the command to be sent to thieaedeWhe first two bytes are the RESET
command, the third byte is the ECHO command. The AB300 seadssponse to a reset command so | send
the 'ECHO’ to verify that the device is responding. The AB3@8ets itself fast enough that it can see an echo
command immediately following the reset command.

Note that the process variable value is not used (there'sintf Boformat character in the command string).
The AB300 is reset whenever the EPICS record is processed.

rspLen The size of the readback buffer. Although only one readbatk ts expected | allow for a few extra bytes
justin case.

msgLen The size of the buffer into which the command string is pladedlowed a little extra space in case a longer
command is used some day.

convert No special conversion function is needed.
P1,P2,P3There’s no special conversion function so no argumentsesded.
pdevGpibNames There’s no name table.

eos The end-of-string value used to mark the end of the readbaetation. GPIB devices can usually leave this entry
NULL since they use the End-Or-Identify (EOI) line to deltnmessages.

Command array index 1 — Go to new filter position

{&DSET_LO, GPIBWRITE, IB Q LON NULL, "\017%", 10, 10,
NULL, O, O, NULL, NULL, "\030"},

dset This command is associated with an longout record.

type A WRITE operation is to be performed.

pri This operation will be placed on the low-priority queue @ kequests.
cmd Because this is a GPIBWRITE operation this element is unused.

format The format string to generate the command to be sent to theedekhe filter position (1-6) can be converted
to the required command byte with the prif format.

rspLen The size of the readback buffer. Although only two readbagk$are expected | allow for a few extra bytes
justin case.

msgLen The size of the buffer into which the command string is pladedlowed a little extra space in case a longer
command is used some day.

convert No special conversion function is needed.
P1,P2,P3There’s no special conversion function so no argumentsegdead.
pdevGpibNames There’s no name table.

eos The end-of-string value used to mark the end of the readbpekation.

Command array index 2 — Query filter position

{&DSET_LI, GPIBREAD, IB_QLOW "\035", NULL, 0, 10,
convertPositionReply, 0, 0, NULL, NULL, "\030"},

dset This command is associated with an longin record.
type A READ operation is to be performed.
pri This operation will be placed on the low-priority queue @ kequests.

cmd The command string to be sent to the device. The AB300 resporttlis command by sending back three bytes:
the current position, the controller status, and a terririgat\ 030’ .

format Because this operation has its own conversion functiorefleisient is unused.
rspLen There is no command echo to be read.

msglLen The size of the buffer into which the reply string is placedthaugh only three reply bytes are expected |
allow for a few extra bytes just in case.

convert There’s no sscanf format that can convert the reply from tB8@0 so a special conversion function must be
provided.

P1,P2,P3The special conversion function requires no arguments.
pdevGpibNames There’s no name table.

eos The end-of-string value used to mark the end of the read tipera

Command array index 3 — Query controller status This command array entry is almost identical to the previous
entry. The only change is that a different custom converiiantion is used.

{&DSET_LI, GPIBREAD, IB_QLOW "\035", NULL, 0, 10,
convert StatusReply, 0, 0, NULL, NULL, "\030"},

3.2.5 Write the special conversion functions

As mentioned above, special conversion functions are needrivert reply messages from the AB300 into EPICS
PV values. The easiest place to put these functions is jdstédéhegpi bCnds table. The conversion functions
are passed a pointer to tlypi bDpvt structure and three values from the command table entry. gpihdDpvt
structure contains a pointer to the EPICS record. The custmwersion function uses this pointer to set the record’s
value field.

Here are the custom conversion functions | wrote for the AB30

/*
* Cust om conversi on routines
*/

static int

convert Positi onRepl y(struct gpi bDpvt *pdpvt, int P1, int P2, char **P3)
{

struct |onginRecord *pli = ((struct |onginRecord *)(pdpvt->precord));

i f (pdpvt->msglnputlLen != 3) {
epi csSnprint f (pdpvt - >pasynUser - >er r or Message,
pdpvt - >pasynUser - >err or MessageSi ze,
"lInvalid reply");

return -1;
}
p|i_>va| = pdet->rng[0].
return O;
}
static int

convert St at usRepl y(struct gpi bDpvt *pdpvt, int Pl, int P2, char **P3)
{

struct |onginRecord *pli = ((struct |ongi nRecord *)(pdpvt->precord));

i f (pdpvt->nsglnputlLen !'= 3) {
epi csSnprint f (pdpvt - >pasynUser - >er r or Message,
pdpvt - >pasynUser - >er r or MessagesSi ze,
"I'nvalid reply");

return -1;
}
pli->val = pdpvt->nsg[1];
return O;

}
Some points of interest:
1. Custom conversion functions indicate an error by rehgni.
2. If an error status is returned an explanation should hén¢fieer r or Message buffer.

3. I putin a sanity check to ensure that the end-of-stringaxtar is where it should be.

3.2.6 Provide the device support initialization

Because of way code is stored in object libraries on diffesystems the device support parameter table must be
initialized at run-time. The analog-in initializer is ustdperform this operation. This is why all device supportsfile
must declare an analog-in DSET.

Here’s the initialization for the AB300 device support. TAB300 immediately echos the command characters sent
to it so the respond2Writes value must be set to 0. All the othkres are left as created by the makeSupport.pl script:

static long init_ai(int parm

{
i f(parm=0) {
devSupPar mrs. name = "devAB300";
devSupPar ns. gpi bCnds = gpi bCds;
devSupPar ms. nunpar ans = NUVPARAMS;
devSupPar ms. ti neout = TI MEQOUT;
devSupPar ms. ti meW ndow = TI MEW NDOW
devSupPar ms. respond2Wites = 0;
}
return(0);
}

3.3 Modify the device support database definition file

This file specifies the link between the DSET names definedardévice support file and the DTYP fields in the
application database. The makeSupport.pl command creategample file inAB300Sup/ devAB300. dbd. If
you removed any of thBSET_xxx definitions from the device support file you must remove threesponding lines
from this file.

devi ce(ai, GPI B_I O, devAi AB300, " AB300")
devi ce(l ongi n, GPI B |1 O, devLi AB300, " AB300")
devi ce(l ongout GPIB 1 O devLoAB300, " AB300")

i ncl ude "asyn. dbd"

3.4 Create the device support database file

This is the database describing the actual EPICS proceishles associated with the filter wheel.
I modified the fileAB300Sup/ devAB300. db to have the following contents:

record(l ongout, "(P)(R) FilterWweel: :reset")

{
fiel d(DESC, "Reset AB300 Controller")
fiel d(SCAN, "Passive")
field(DTYP, "AB300")
field(OQUT, "#L$(L) A$(A) @")
}
record(l ongout, "(P)(R) FilterWwheel")
{
fiel d(DESC, "Set Filter Weel Position")
fiel d(SCAN, "Passive")
field(DTYP, "AB300")

field(OUT, "#L$(L) A$(A @")
fiel d(LOPR 1)
fiel d(HOPR 6)

}
record(longin, "(P)(R) FilterWweel:fbk")

{
fiel d(DESC, "Filter Weel Position")
fiel d(SCAN, "Passive")
field(DTYP, "AB300")
field(INP, "#L$(L) A$(A @")
fiel d(LOPR, 1)
fiel d(HOPR, 6)
}
record(longin, "(P)(R) FilterWeel:status")
{
fiel d(DESC, "Filter \Weel Status")
fiel d(SCAN, "Passive")
fiel d(DTYP, "AB300")
field(INP, "#L$(L) A$(A @B")
}
Notes:

1. The numbers following thk in the INP and OUT fields are the number of the ‘link’ used to cwmicate with
the filter wheel. This link is set up at run time by commandsimapplication startup script.

2. The numbers following tha in the INP and OUT fields are unused by serial devices but neuat\alid GPIB
address (0-30) since the GPIB address conversion routitexk ¢he value and the diagnostic display routines
require a matching value.

3. The numbers following th@in the INP and OUT fields are the indices into the GPIB commarelya
4. The DTYP fields must match the names specified in the devBRIBA database definition.
5. The device support database follows the ASYN conventiahthe macros $(P), $(R), $(L) and $(A) are used
to specify the record name prefixes, link number and GPIBesidirespectively.
3.5 Build the device support

Change directories to the top-level directory of your dexsapport and:
nor une> make
(gnumake on Solaris).
If all goes well you'll be left with a device support librarg lib/<EPICS HOST ARCH>/, a device support database
definition in dbd/ and a device support database in db/.

4 Create a test application

Now that the device support has been completed it's timedatera new EPICS application to confirm that the device
support is operating correctly. The easiest way to do thigtis the makeBaseApp.pl script supplied with EPICS.

Here are the commands | ran. You'll have to changé therre/ EPI CS/ base to the path to where your EPICS base
is installed. If you're not running on Linux you'll also have change all thé i nux- x86 to reflect the architecture
you're using éol ari s- spar ¢, darw n- ppc, etc.). | built the test application in the same <top> as teaak
support, but the application could be built anywhere. Aslwdiuilt the application as a 'soft’ IOC running on the
host machine, but the serial/GPIB driver also works on RTEEM& vxWorks.

nor une> cd ab300
nor ure> /home/EPICS/base/bin/linux-x86/makeBaseApp.pl -t ioc B300
nor une> /home/EPICS/base/bin/linux-x86/makeBaseApp.pl -i -t i© AB300
The following target architectures are avail able in base:
RTEMS- pc386
I i nux-x86
sol ari s-sparc
W n32- x86-cygw n
vxWor ks- ppc603
What architecture do you want to use? linux-x86

5 Using the device support in an application

Several files need minor modifications to use the device stippthe test, or any other, application.

5.1 Make some changes to configure/RELEASE

Edit theconf i gur e/ RELEASE file which makeBaseApp.pl created and confirm that the EPBASE path is
correct. Add entries for your ASYN and device support. Faraple these might be:

AB300=/ hone/ EPI CS/ nodul es/ i nst runment / ab300/ 1- 2
ASYN=/ horre/ EPI CS/ nodul es/ sof t/ asyn/ 3- 2
EPI CS_BASE=/ hone/ EPI CS/ base

5.2 Modify the application database definition file

Your application database definition file must include thtablase definition files for your instrument and for the
ASYN drivers. There are two ways that this can be done:

1. If you are building your application database definiticoni anxxxI ncl ude. dbd file you include the addi-
tional database definitions in that file. For example, to agupert for the AB300 instrument and local and
remote serial line drivers:

i ncl ude "base. dbd"

i ncl ude "devAB300. dbd"
i ncl ude "drvAsynl PPort . dbd"
i ncl ude "drvAsynSeri al Port. dbd"

2. If you are building your application database definiticoni the application Makefile you specify the additional
database definitions there:

xxx_DBD += base.dbd

xxx_DBD += devAB300.dbd
xxx_DBD += drvAsynIPPort.dbd
xxx_DBD += drvAsynSerialPort.dbd

5.3 Add the device support libraries to the application
You must link your device support library and the ASYN suppitrary with the application. Add the following lines

xxxX_LI BS += devAB300
xxx_LI BS += asyn

before the
xxx_LIBS += $(EPI CS_BASE | OC LI BS)

line in the applicatiovakefi | e.

5.4 Modify the application startup script

Thest . cnd application startup script created by the makeBaseApprptmeeds a few changes to get the applica-
tion working properly.

1. Load the device support database records:

cd $(AB300) (cd AB300 if using the vxWorks shell)
dbLoadRecor ds(" db/ devAB300. db", " P=AB300: , R=, L=0, A=0")

2. Set up the 'port’ between the IOC and the filter wheel.

e If you're using an Ethernet/RS-232 converter or a devicectvliommunicates over a telnet-style socket
connection you need to specify the Internet host and portreutike:

dr vAsynl PPor t Confi gure("L0O", "164. 54.9.91: 4002", 0, 0, 0)
e If you're using a serial line directly attached to the IOC ymed something like:

drvAsynSeri al Port Confi gure("LO","/dev/ttyS0", 0, 0, Q)

asynSet Option("LO", -1, "baud", "9600")

asynSet Option("LO", -1, "bits", "8")

asynSet Option("LO", -1, "parity", "none"

asynSet Option("LO", -1, "stop", "1")

asynSet Option("LO", -1, "clocal", "Y")

asynSet Option("LO", -1, "crtscts", "N')

e If you're using a serial line directly attached to a vxWork3Q you must first configure the serial port

interface hardware. The following example shows the contteda configure a port on a GreenSprings
UART Industry-Pack module.

i pacAddVI PC616_01(" 0x6000, BOOO0O000")

tyGSCect al Drv(1)

t yGSCct al Modul el ni t (" RS232", 0x80, 0, 0)

tyGSCct al DevCreate("/tyGS/ 0/ 0", 0, 0, 1000, 1000)
drvAsynSeri al Port Confi gure("LO","/tyGS/ 0/0", 0, 0, 0)
asynSet Option("LO", -1, "baud", "9600")

In all of the above examples the first argument of the configun@ set port option commands is the link
identifier and must match tHevalue in the EPICS database record INP and OUT fields. Thendesrgument

of the configure command identifies the port to which the cotioe is to be made. The third argument sets
the priority of the worker thread which performs the 1/0O agg@ns. A value of zero directs the command to
choose areasonable default value. The fourth argumentasadirect the device support layer to automatically
connect to the serial port on startup and whenever the sgiabecomes disconnected. The final argument is
zero to direct the device support layer to use standard &stting processing on input messages.

3. (Optional) Add lines to control the debugging level of erial/GPIB driver. The following enables error
messages and a description of every 1/O operation.

asynSet TraceMask("L0O", -1, 0x9)
asynSet Tracel Ovask("LO", -1, 0x2)

A better way to control the amount and type of diagnostic ouigpto add an asynRecord to your application.

5.5 Build the application
Change directories to the top-level directory of your aggiion and:
nor une> make

(gnumakeon Solaris).
If all goes well you'll be left with an executable program imiinux-x86/AB300.

5.6 Run the application

Change directories to where makeBaseApp.pl put the apiglicatartup script and run the application:

nor une> cd iocBoot/iocAB300

nor une> ../../bin/linux-x86/AB300 st.cmd

dbLoadDat abase("../../dbd/ AB300. dbd", 0, 0)

AB300_r egi st er Recor dDevi ceDri ver (pdbbase)

cd ${AB300}

dbLoadRecor ds(" db/ devAB300. db", " P=AB300: , R=, L=0, A=0")

dr vAsynl PPor t Confi gure("LO", "164.54. 3. 137: 4001", 0, 0, 0)

asynSet Tr aceMask("L0", -1, 0x9)

asynSet Tr acel Ovask("L0O", - 1, 0x2)

ioclnit()

HEHHHBHHH PR H PR H B H R R R H R H R R H R H AR R R H R H R R H R H R R
EPICS | OC CORE built on Apr 23 2004

EPICS R3.14.6 $$Nane: $$ $$Date: 2004/06/23 13:50: 20 $$

HAHHH B R HHH B R HH R R H TR R R R R A R R AR R R
Starting ioclnit

ioclnit: Al initialization conplete

Check the process variable names:

epi cs> dbl

AB300: Fi | t er Wheel : f bk
AB300: Fi | t er Wheel : st at us
AB300: Fi | t er Wheel

AB300: Fi | t er Wheel : reset

10

Reset the filter wheel. The values sent between the |OC arfdtdrevheel are shown:

epi cs> dbpf AB300:FilterWheel:reset 0

DBR_LONG 0 0x0

2004/ 04/ 21 12:05:14.386 164.54.3.137:4001 wite 3 \377\377\033
2004/ 04/ 21 12:05:16.174 164.54.3.137:4001 read 1 \033

Read back the filter wheel position. The dbtr command primsécord before the I/O has a chance to occur:

epi cs> dbtr AB300:FilterWheel:fbk

ACKS: NO_ALARM ACKT: YES ADEL: 0 ALST: O

ASG BKPT: 0x00 DESC. Filter Weel Position

DI SA: 0O DISP. 0O DI SS: NO_ALARM DSv: 1

DTYP: AB300Gpi b EGU: EVNT: O FLNK: CONSTANT O
HHSV: NO_ALARM HGH 0 HH: 0 HOPR: 6

HSV: NO_ALARM HYST: O INP: GPIB_| O #L0 A0 @

LALM O LCNT: O LLSV: NO_ALARM LOLG O

LOPR 1 LOW O LSV: NO_ALARM MDEL: O

M.ST: O NAME: AB300: Fi | t er Wheel : f bk NSEV: NO_ALARM
NSTA: NO_ALARM PACT: 1 PHAS: 0 PINI: NO

PRIG LOW PRCC. 0 PUTF: 0 RPRG 0

SCAN: Passi ve SDI S: CONSTANT SEVR: | NVALI D S| M_: CONSTANT
SIMVM NO SI MS: NO_ALARM Sl OL: CONSTANT STAT: UDF

SVAL: 0 TPRO O TSE: O TSEL: CONSTANT
UDF: 1 VAL: O

2004/ 04/ 21 12:08:01.971 164.54.3.137:4001 wite 1 \035
2004/ 04/ 21 12:08:01.994 164.54. 3. 137: 4001 read 3 \ 001\ 020\ 030

Now the process variable should have that value:

epi cs> dbpr AB300:FilterWheel:fbk

ASG DESC: Filter Weel Position DISA: O
DISP. O DISv: 1 NAME: AB300: Fi | t er Wheel : f bk
SEVR. NO _ALARM STAT: NO _ALARM SVAL: 0 TPRO. 0
VAL: 1

Move the wheel to position 4:

epi cs> dbpf AB300:FilterWheel 4

DBR_LONG 4 0x4

2004/ 04/ 21 12:10:51.542 164.54.3.137:4001 wite 2 \017\004
2004/ 04/ 21 12:10:51.562 164.54.3.137:4001 read 1 \020
2004/ 04/ 21 12:10:52.902 164.54. 3. 137: 4001 read 1 \030

Read back the position:

epi cs> dbtr AB300:FilterWheel:fbk

ACKS: NO_ALARM ACKT: YES ADEL: 0 ALST: 1
ASG BKPT: 0x00 DESC. Filter Wheel Position
DI SA: 0O DI SP: 0 DI SS: NO _ALARM DSv: 1
DTYP: AB300Gpi b EGU: EVNT: O FLNK: CONSTANT 0
HHSV: NO_ALARM HGHE O HH: O HOPR: 6

11

HSV: NO_ALARM HYST: O INP: GPIB_| O #L0 A0 @

LALM 1 LCNT: O LLSV: NO _ALARM LOLO O

LOPR 1 LOW O LSV: NO_ALARM MDEL: O

M.ST: 1 NAME: AB300: Fi | t er Wheel : f bk NSEV: NO_ALARM
NSTA: NO_ALARM PACT: 1 PHAS: 0 PINI: NO

PRIO LOW PROC. 0 PUTF: O RPRO O

SCAN: Passi ve SDI S: CONSTANT SEVR NO_ALARM SI ML: CONSTANT
SIMM NO SI MS: NO_ALARM S| OL: CONSTANT STAT: NO_ALARM
SVAL: 0 TPRO O TSE: 0 TSEL: CONSTANT
UDF: 0 VAL: 1

2004/ 04/ 21 12:11:43.372 164.54.3.137: 4001 wite 1 \035
2004/ 04/21 12:11:43.391 164.54.3.137: 4001 read 3 \ 004\ 020\ 030

And it really is 4:

epi cs> dbpr AB300:FilterWheel:fbk

ASG DESC:. Filter \Weel Position DISA: O
DISP: 0O DSV: 1 NAME: AB300: Fi | t er Wheel : f bk
SEVR: NO _ALARM STAT: NO _ALARM SVAL: 0 TPRO. O
VAL: 4

6 Device Support File
Here is the complete device support file for the AB300 filtee@lfAB300Sup/ devAB300. c):

/*
* AB300 devi ce support
*/

#i ncl ude <epi csStdio. h>
#i ncl ude <devCommonGpi b. h>

/**)\'7\'********)\'***************************************)\'7\'************************

*

* The followi ng define statements are used to declare the nanmes to be used
* for the dset tables.

*

* A DSET_Al entry nust be declared here and referenced in an application

*

dat abase description file even if the device provides no Al records.
*

**/

#def i ne DSET_Al devAi AB300
#defi ne DSET_LI devLi AB300
#define DSET_LO devLoAB300
#i ncl ude <dev®i b. h> /* nust be included after DSET defines */

#def i ne TI MEQUT 5.0 [* 1/ O must conplete within this time */
#define TI MEWNDOW 2.0 /* Wait this long after device tinmeout */

/*

12

* Custom conversi on routines

*/
static int
convert Positi onRepl y(struct gpi bDpvt *pdpvt, int P1, int P2, char **P3)
{

struct |onginRecord *pli = ((struct |onginRecord *)(pdpvt->precord));

i f (pdpvt->msgl nputlLen !'= 3) {
epi csSnprint f (pdpvt - >pasynUser - >er r or Message,
pdpvt - >pasynUser - >err or MessageSi ze,
“Invalid reply");

return -1;
}
pli->val = pdpvt->nmsg[0];
return O;
}
static int

convert StatusRepl y(struct gpi bDpvt *pdpvt, int Pl, int P2, char **P3)
{

struct |onginRecord *pli = ((struct |onginRecord *)(pdpvt->precord));

i f (pdpvt->msglnputlLen !'= 3) {
epi csSnprint f (pdpvt - >pasynUser - >er r or Message,
pdpvt - >pasynUser - >er r or MessageSi ze,
"Invalid reply");

return -1;
}
pli->val = pdpvt->nsg[1];
return O;

}

/**

*

* Array of structures that define all GPI B nmessages

* supported for this type of instrunent.
*

**/

static struct gpi bCrd gpi bCrds[] = {
/[* Param O -- Device Reset */
{&DSET_LO, GPIBWRITE, IB Q LOWN NULL, "\377\377\033", 10, 10,
NULL, O, O, NuULL, NULL, "\033"},

[* Param 1l -- Go to new filter position */
{&DSET_LO, GPIBWRITE, IB Q LOW NULL, "\017%", 10, 10,
NULL, O, O, NULL, NULL, "\030"},

[* Param 2 -- Query filter position */

{&DSET_LI, GPIBREAD, 1B Q LOWN "\035", NULL, 0, 10,
convertPositionReply, 0, 0O, NULL, NULL, "\030"},

13

[* Param 3 -- Query controller status */
{&DSET_LI, GPIBREAD, IB_ Q LOWN "\035", NULL, 0, 10,
convert StatusReply, 0, 0, NULL, NULL, "\030"}

b

/* The following is the nunber of elements in the command array above. */
#def i ne NUMPARAMS si zeof (gpi bCrds) / si zeof (struct gpi bCnd)

/**
*

* |nitialize device support paraneters

*

**********************)\'*********)\'**/

static long init_ai(int parm

{
i f(parm=0) {
devSupPar nms. nane = "devAB300";
devSupPar ms. gpi bCrds = gpi bCnds;
devSupPar ms. nunpar ans = NUMPARAMS;
devSupParns. ti meout = TI MEQUT;
devSupPar s. t i mreW ndow = TI MEW NDOW
devSupPar ms. respond2Wites = 0;
}
return(0);
}

7 asynRecord support

The asynRecord provides a convenient mechanism for céingdhe diagnostic messages produced by asyn drivers.
To use an asynRecord in your application:

1. Add the line
DB | NSTALLS += $(ASYN)/ db/ asynRecord. db

to an applicatiovakefi | e.

2. Create the diagnostic record by adding a line like

cd $(ASYN) (cd ASYN if using the vxWorks shell)
dbLoadRecor ds("db/ asynRecor d. db", " P=AB300, R=Test , PORT=L0, ADDR=0, | MAX=0, OMAX=0")

to the application startus¢ . cd) script. ThePORT value must match the the value in the corresponding
dr vAsynl PPor t Confi gure ordrvAsynSeri al Port Confi gur e command. Th@addr value should

be that of the instrument whose 1/0 you wish to monitor. PrendR values are arbitrary and are concatenated
together to form the record name. Choose values which aggiear@mong all IOCs on your network.

To run the asynRecord screen, adasynTop>/ medmto your EPI CS_DI SPLAY_PATH environment variable and
start medm withP, R, PORT andADDR values matching those given in tdeLoadRecor ds command:

medm - x -macro " P=AB300, R=Test, PORT=L0, ADDR=0" asynRecord. adl

14

	Introduction
	Determine the required I/O operations
	Create a new device support module
	Make some changes to the files in configure/
	Create the device support file
	Modify the device support database definition file
	Create the device support database file
	Build the device support

	Create a test application
	Using the device support in an application
	Make some changes to configure/RELEASE
	Modify the application database definition file
	Add the device support libraries to the application
	Modify the application startup script
	Build the application
	Run the application

	Device Support File
	asynRecord support

