EPICS MODIFICATIONS ENABLING LUA – BASED DATA PROCESSING SUBSCRIPTION UPDATE FILTERS

Jeff Hill

DATA PROCESSING LUA SUBSCRIPTION FILTERS – LUA, A BRIEF INTRODUCTION (REVIEW)

- Lua, a Brief Introduction (review)
- EPICS Integration of Lua milestones (review)
- Data Processing Lua Subscription Filters, Motivation
- Data Processing Lua Subscription Filters, Implementation
- Conclusions

DATA PROCESSING LUA SUBSCRIPTION FILTERS – LUA, A BRIEF INTRODUCTION (REVIEW)

- Lua *embeddable* language was created in 1993
 - By members of the Computer Graphics Technology Group (Tecgraf) at the Pontifical Catholic University of Rio de Janeiro, in Brazil.
- "Lua" (pronounced **LOO-ah**) means "Moon" in Portuguese
- Interpreted, compiled at load-time to byte-code
- A mixture of C-like and Pascal-like syntax
- Dynamic typed, automated conversion between string and numeric types
- Efficient virtual machine execution, small footprint, incremental garbage collection, easily interfaced with C code
- Liberal MIT license
- Some negatives also, see my talk at Michigan EPICS meeting
 - In particular, variables are globally scoped by default

- Lua 5.2.3, the current release, embedded inside of EPICS base
 - Built by the EPICS build system
- Lua 5.2.3 has the upgraded support for integer primitive types
- The current released version of Lua is now at 5.3

- Lua based subscription filtering in the CA server
 - Event queue is order correct
 - Based on C++ 11 shared pointer
 - Subset of boost included in EPICS base supporting prior compilers
 - Based on Data Access abstract base class
 - Interface is independent of data source implementation

- Lua based subscription filtering in the CA server
 - Filters specified in channel name postfix
 - Invoking Lua methods supplied when the IOC boots
 - Each client attaching to the server
 - Instantiates an independent Lua context

- Alternative EPICS SHELL
 - In contrast, a fully functionality scripting language
 - Powerful libraries, built-in and community
- An environment well proven for use in
 - Configuration
 - Scripting
 - Rapid-prototyping

- Currently we have two computational record-level building block components
 - EPICS calc record
 - Excellent rapid prototyping, but limited functionality
 - EPICS subroutine record
 - Excellent efficiency, but possibly less popular for rapid prototyping
- A new Lua based record provides
 - Comprehensive functionality set
 - A reasonable compromise runtime execution efficiency
 - The rapid prototyping we depend on with the calc record
 - Upgrade in-place
 - Runtime code updates via CA puts to lua record fields
 - And, hopefully the heavy lifting comes for free with Lua

- IOC's registrar enhanced to allow registration of
 - C object code embedded Lua code
 - Lua interfaced C code
- Facilitate these components to be instantiated into Lua contexts when they initialize
 - EPICS Lua IOC Shell per-shell private Lua contexts
 - EPICS Lua record per-record private Lua contexts
 - EPICS CA server per-client private Lua contexts
- Use C++ shared_ptr for life time management of read-only Lua byte code chunks
 - Less overhead, no Mutex required

DATA PROCESSING LUA SUBSCRIPTION FILTERS – MOTIVATION

- At LANSCE, in addition to gate flavored subscriptions, we need
 - Application specific data attributes conveyed from server
 - To application specific CA clients
 - Defining server-to-client private application specific protocol
 - Conveying
 - An array time-slice, specified by channel name postfix
 - Offset, from gate rising / falling edge, time delay units
 - Width, time delay units
 - Bit mask identifying Array active beam gates when the data were captured
 - Implemented by inserting an additional array element
 - The status of the filter request
 - Implemented by inserting an additional array element

DATA PROCESSING LUA SUBSCRIPTION FILTERS – IMPLEMENTATION

- Lua wrapper objects for Data Access generic interfaces
 - Number, Integer, Boolean, String, TimeStamp, container (Catalog), Array, Nill
 - Enclosing
 - The data, or a reference to an Array interface or container (Catalog) interface
 - Array interface publishes element sequence with bounds
 - Reference to Catalog of subordinate properties
 - Property hierarchy traversal via Lua "dot" indexing
- Filters previously returned only {false,true}
 - False suppresses update, true sends update
- Filters now optionally return also {Nill, Data Object}
 - Nill return suppresses subscription update
 - A returned data object is proxy delivered in the CA subscription update payload
 - Windowing and array element insertion implemented by C based resequencing Lua snap-in
 - This does not result in reallocation of space for array or array copying

DATA PROCESSING LUA SUBSCRIPTION FILTERS – STATUS

- Lua features described here are in Bazaar branch
 - Ip:~johill-lanl/epics-base/server0
- Lua features described here as new
 - Development branch, in-progress
 - Ip:~johill-lanl/epics-base/server1

DATA PROCESSING LUA SUBSCRIPTION FILTERS – CONCLUSION

- LANSCE has implemented a comprehensive integration of Lua into EPICS base
 - Lua based EPICS shell
 - Lua script record
 - Registry loaded Lua chunks, Lua interfaced C code
 - CA server Lua subscription update filtering / data processing
 - Data Access Array is a Lua object
 - Filter optionally returns proxy data object delivered in data payload to client

