
Using Area Detector As A General 

Purpose Processing Framework

Ned Arnold

Siniša Veseli

Argonne National Laboratory

EPICS Collaboration Meeting

June 2018

EPICS Collaboration Meeting  - June 2018



APSU Data Acquisition System

2

• Provides time correlated/synchronously sampled data
• Can be used for commissioning, troubleshooting, 

performance monitoring and early fault detection
• Separated from operational systems to allow 

troubleshooting during user operations

• Can acquire data from several subsystems at various 
sample rates

• Supports continuous/triggered acquisition, static 
parameters, slow (in development) and fast data

• Scalability
• Ability to route data to any number of applicationsEPICS Collaboration Meeting  - June 2018



DAQ Usage Example (L. Emery)

3

• Suppression of 147Hz vibration source in the 
ring using the DAQ system + post-processing 
with FFT

• Vacuum chamber was vibrating and introduced 
a Bx field; shims were inserted between poles 
and vacuum chamber (S37AQ3, S37AQ2)

• Identification of the nearest quadrupoles 
required 400 channels, 20 seconds of 
continuous DAQ data to get 0.5Hz precision

• This allowed separating line frequencies of 20 
pumps

• Figure on the top is showing data before 
shimming, while  the one on the right is showing 
results after shimming

EPICS Collaboration Meeting  - June 2018



DAQ IOC

4
EPICS Collaboration Meeting  - June 2018

Uses Asyn/AD Framework:
• Data is packed into ND 

Arrays

Varies by technical system:
• MRF Event Receiver
• APS Event Receiver
• NTP/PTP

Prototyped several options:
• Custom TCP 
• EPICS V4 PVA
• AMQP (QPID) 



Asyn/AD Framework Usage: Initial Approach

§ Use Asyn/AD Framework to collect and process data from technical subsystems
- Driver packs channel data into ND Arrays, and passes it to real-time processing plugins
- ND Array attributes describe the content (i.e., what data is in ND Array, how is it packed)
- Communication plugin streams ND Arrays to remote Data Collector service where it is 

unpacked, stored, and (possibly) forwarded to the Data Distribution Service (Message 
Broker)

§ DAQ Data Packet

5

EPICS Collaboration Meeting  - September 2016

List of Parameters (NDArray Attributes)
(including list of channels that follow)

Block of Time-series Data

Timestamp Channel 1 Channel 2 Channel 4Channel 3 … Channel N
.
.
. 

.

.

. 

.

.

. 

.

.

. 

.

.

. 

.

.

. 

Since absolute timestamps are recorded, plotting channels from different files/systems against “Timestamp” 
provides immediate time-correlated plots .

EPICS Collaboration Meeting  - June 2018



Challenges

§ How do we pack data?
- ND Array was designed for homogeneous data; DAQ must handle multiple data types
- Timestamps are doubles, channel data may not be
- DAQ channels may have different data types

§ How do we handle runtime configuration changes? 
- Must be able to turn on/off different channels without restarting various system components
- Configuration changes result in ND Array packing scheme changes

§ How do we provide DAQ users with easy access to individual channel data? 
- Cannot be done without custom clients that know how ND Array was packed

§ How do we handle slow vs fast data?
- Must avoid significant overhead in memory/network bandwidth

§ How do we efficiently access/process channel data in real-time DAQ processing 
plugins?
- Unpacking ND Array data in plugins themselves is very inefficient

6
EPICS Collaboration Meeting  - June 2018

Possible Solution

§ Modify AD framework to pass DAQ structures through plugins; those could then be 
easily exposed as EPICS v4 structures over PV Access protocol



DAQ AD Core Extension 

§ Goals: 
1) Minimal modification of AD core code that allows us to pass arbitrary data through 

processing plugins (without having to pack/unpack ND arrays in plugins themselves) 
2) Backwards compatibility: no existing AD plugins need to change
3) Ability to retrieve data from IOC via standard PVA APIs and tools like pvget

§ Strategy: use NDArray/NDArrayPool as base classes for extending the AD Core 
functionality

§ AD Core modifications: 6 lines of code in NDArray.h and about 25 lines of code in 
NDArrayPool.cpp:
- New NDArrayPool class methods for management of extended ND arrays
- Modifications to keep track of ELL node offset

§ Custom DAQ Code:
- RtfbNDArray (derived from NDArray, incorporates custom v4 structure) and 

RtfbNDArrayPool classes (derived from NDArrayPool, manages RtfbNDArrays)
- Driver code uses custom pool and manipulates RtfbNDArray
- RtfbNDPluginPva exposes RtfbNDArray via PV Access channel  (plugin uses dynamic cast 

to convert NDArray pointer to RtfbNDArray pointer)

7
EPICS Collaboration Meeting  - June 2018



DAQ AD Core Extension 

§ Advantages: 
- Approach is completely backwards compatible (no need to change existing plugins)
- Requires minimal modifications to AD Core
- No loss in performance due to packing/unpacking ND Arrays in plugins
- Custom plugins can expose data as v4 structures easily; those can be accessed using 

standard client tools:
$ pvget rtfb_ext_ndarray
rtfb_ext_ndarray
structure

uint ArrayId 0
double[] TimeStamp []
float[] PosX_0 []
float[] PosY_0 []
float[] PosX_1 []
float[] PosY_1 []
…

§ Drawbacks:
- Custom plugins that use classes derived from NDArray must downcast (performance hit)
- Design not quite suitable for a general purpose processing framework
- Better solution would require AD Core refactoring/redesign, and would not be 

backwards compatible 

8
EPICS Collaboration Meeting  - June 2018



Final Comments

§ Current DAQ production code: 
− Uses EPICS 3.15.x, AD Core 2.5
− Mixture of old (use NDArray) and new (use DAQ extension) style IOCs

§ DAQ development will transition to EPICS7, AD Core 3.2
§ PR #324 for DAQ AD Core (merged recently): will allow us to 

keep up with AD Core changes

9

EPICS Collaboration Meeting  - June 2018


