
Typhon
Automated Generation of PyDM Displays

Teddy Rendahl



2

Motivation

• PyDM opens the door to a more modern UI

• Integrated with experimental Python environment

• Include information from multiple data sources

• Programmatically generate screens using Python

• Thousands of existing EDM screens to convert or recreate

• Four new LCLS-II instruments with a focus on lowered 

operations budget

• Less support from engineers to create and maintain screens

• Less support from staff scientists to assist with user beamtimes



3

Design Principles

• Engineering Goals

• Avoid ”drag and drop” widget creation wherever possible

• Decrease the maintenance required to keep screens updated 

by removing configuration information

• Provide a clear framework for adding intelligence to screens

• Operational Improvements

• Uniform methodology for displaying complex device structures

• Importance of control points is clear from screen design

• Consistency between interfaces lowers operator training time



4

Typhon

• Automatically build PyDM displays based 

on the structure of an Ophyd Device

• Use the abstraction layer of Ophyd

signals with PyDM to display raw and 

interpreted data

• Consolidate tools formerly kept in 

separate applications 



5

Ophyd as a Device Data Structure

• Contained within an 

Ophyd Device:

• Clear component 

hierarchy

• Terse but human 

readable aliases for 

control points

• Categorization of signals 

based on the relevance 

to standard operation



6

Basic Signal Organization

• Show most important 

attributes at the top while 

the remainder are into tabs

• Automatically recognize 

signal types including:

• Read-Only

• Enum

• Simulated



7

Basic Signal Organization

• Show most important 

attributes at the top while 

the remainder are into tabs

• Automatically recognize 

signal types including:

• Read-Only

• Enum

• Simulated



8

Expanding the Interface



9

Complex Devices



10

Including Logic 



11

Including Logic



12

Major Advantages

• Common way to present 

complex devices

• Spend more time thinking 

about how to organize your 

device rather than dragging 

and dropping

• Inclusion of higher level 

logical operations is simple

• Synergy between command 

line and Graphical User 

Interface



13

On the Horizon

• Current Status

• V0.2.0 released in beta

• Will be deployed in the Fall for 

operator feedback

• Planned Improvements

• Handle positioners uniquely

• Inclusion of more external tools

• Prototype for a RunEngine with 

fixed plans

• Beamline process specific 

screens, not device specific



14

Support for Complete Screen Lifecycle

1. Screen is automatically generated by Typhon

2. Screen is saved to disk for use by operators

3. Adjustments to screens are made by operators

4. As updates to tools and devices are made, screens are 

re-imported and updated in a programmatic fashion



15

Links

Documentation

https://pcdshub.github.io/typhon/

Repository

https://github.com/pcdshub/typhon


