

Wir schaffen Wissen – heute für morgen

Paul Scherrer Institut

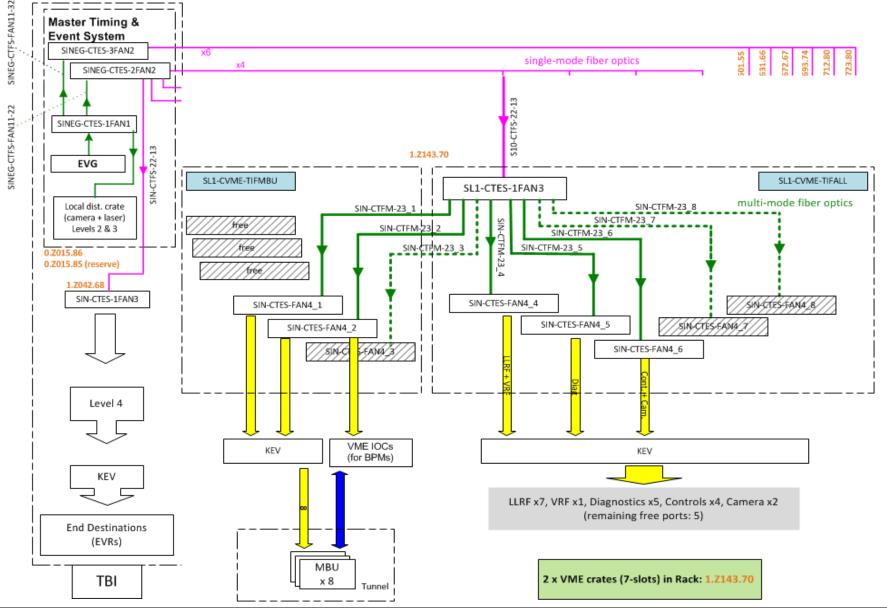
Babak Kalantari (Controls)

SwissFEL Timing System

PAUL SCHERRER INSTITUT

SwissFEL Machine

Photocathode RF gun (Injector) / V/ Linac 1()		phase 8-19? 2.6-3.4 Linac 3 3.0-		user stations
On the first floor the RFmodulators and other supply systems are situated.			SwissFEL parameter	
a start and a start			Wavelength from	1 Å - 70 Å
	Main LINAC	#	Photon energy	0.2-12 keV
logn lnjector	LINAC modules	26	Pulse duration	1 fs - 20 fs
	Modulator	26	e ⁻ Energy	5.8 GeV
	Klystron	26	e ⁻ Bunch charge	10-200 pC
	Pulse compressor	26	Repetition rate	100 Hz
	Accelerating structures	104	Bunch per pulse	single/double
	Waveguide splitter	78	Bunch spacing	28ns


(Swiss)FEL Timing homework

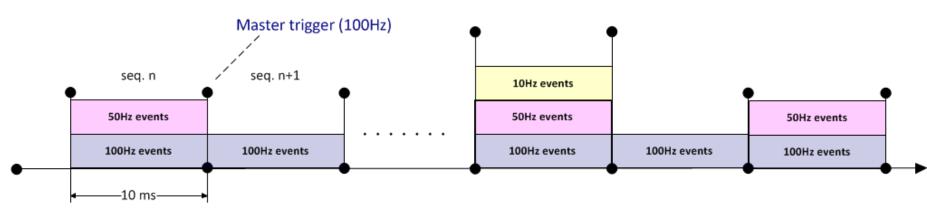
- 1. Check/Specify H/W requirement: event clock, jitter budget, drifts, functions/features, etc.
- 2. Specify control system (bus) interfaces/form factors: VME, PCIe, direct event stream, etc.
- 3. Specify AC mains synchronization issues: phase and/or cycle selection for beam
- 4. Design/implement timing network: distribution layers, network monitoring, latency issues
- 5. Specify interface to special system: e.g. Machine Protection System (MPS)
- 6. Rep rate handling: several event groups with controlled independent rep rates
- 7. Beam rate handling: control beam rate without manipulating rep rate (fixed trigger rate)
- 8. Pulse-synchronous acquisition & controls
 - Synchronous read: pulse ID tagging, time stamping, coordinate parallel acquisition instances (multi-user), local/remote buffering, synchronous archiving
 - Synchronous write: synchronous machine scans, e.g. fast emmitance measurements involves synchronous magnet setting and beam profile reading

Timing Distribution Network

SwissFEL Event System

- Event clock 142.8 MHz, 7ns, (specifies delay and event positioning resolution)
- **Event sequence (re)programming at 100 Hz**
- > New features: conditional sequence events (EVG), double delay pulsers (EVR)

1 EVG (VME)							
70 Fan-out/concentrator, full-duplex1-to-8, (VME)							
150 EVR (VME)	90 EVR (PCle)	20 EVR (PMC/XMC)	100 embedded EVR (Direct event stream)				
VME-based systems: RF, LLRF, Laser, diagnostics, etc.	Camera servers, detectors systems, motion control systems	Compact VME systems; plugged on CPU board or intelligent FPGA carrier (aka IFC)	decode event stream in custom FPGA: BPMs, diag. front-end electronics, e.g. BLMs, etc.				

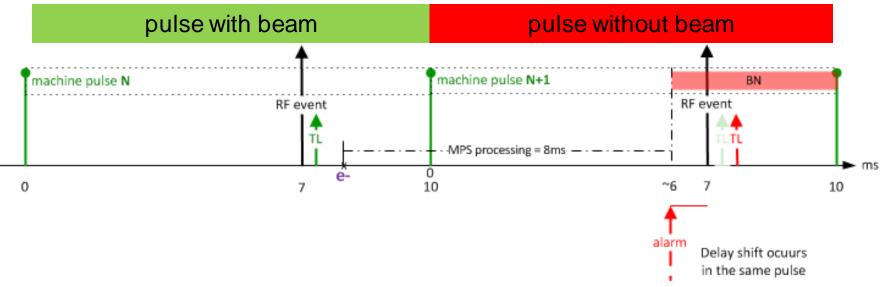

Rep rate controls

- some systems require trigger at every pulse (fixed 100Hz)
- **RF rate triggers** (variable ≤ 100Hz, e.g., 25Hz, …)

due to lack of performance, available power, radiation budget, etc.

■ Laser rate triggers (variable ≤ 100Hz, e.g., 10Hz, …)

pulses with expected beam; controlled reduced rate for machine protection or development, can include diagnostics systems



Every sequence has different event pattern with respect to previous

Works well with good book-keeping of event patterns (i.e. soft sequences) and running of H/W sequencers in Ping-Pong (parallel play/program)

Machine Protection System (MPS) interface

Delay shift mechanism to generate beam blackout

- TL in green is the trigger with normal delay; leads to beam generation (Beam Ok)
- TL in red is the trigger with shifted delay; leads to beam blackout (Beam Not ok)
- shift of ~ 10 us to <u>Gun RF;</u> why delay shift? continues triggers maintain machine stability
- Required actions:
 - (1) <u>Delay shift occurs immediately for selected triggers</u>
 - (2) <u>Beam status has to be reliably distributed (Beam (Not) Ok)</u>

- General timing question for every system at each (100Hz) pulse:
 - a) Should this system be triggered? determined by (event) rep rate
 - b) Should the trigger delay be shifted? determined by MPS or user's demand
 - on-demand <u>Gun RF</u> delay shift? machine conditioning without beam, e.g., startup
 - on-demand <u>Laser</u> delay shift? dark current measurement (without shutter control)
 - c) What is beam status? whether or not beam will be produced

MPS alarm	shift Laser delay	shift Gun RF delay	Beam status
No	No	No	Ok
Yes	-	-	Not ok
No	Yes	No	Not ok
No	No	Yes	Not ok

- New requirements pushes towards new generation of the event system
- Extracting operational requirements requires effort and patience
- FEL timing involves many interesting challenges

Thanks!

Some consequence:

- It must be possible to force on-demand shifted delay <u>locally & individually</u> per system
- MPS alarm must override local demand of shifted delay
- Beam status (signal/info) is a global machine status to be distributed reliably:
 - Known ahead of time if caused by on-demand shifted delay (easy)
 - Otherwise, unknown until MPS processing time is finished (difficult)

Additional feature:

• Emulation of MPS alarm internally in timing system (e.g., test or simulation purposes)

Even more:

• For the next N pulses (don't) produce beam using shifted delay only

Incomplete list; suggests some implementation ideas too

- 1. Event clock 142.8 MHz
- 2. Continuous drift compensation; long term drift < 0.7ns peak-peak
- 3. Delay shift mechanism (controlled by DBUS / events / both ??); must allow enable/disable and local/manual control
- 4. Sequence event masking (in/out) controlled int./ext.
- 5. Data buffer transmit upon int./ext. H/W trigger (in addition to S/W trigger)
- 6. Distribution (fan-out) monitoring (VME bus interface)
- 7. Upstream data (and event) broadcasting by EVG without S/W intervention
- 8. Stimulate delay shift mechanism at EVG internally in addition to external MPS alarm