

ASKAP Status Update

David Brodrick EPICS [Spring] Collaboration Meeting 22nd October 2014

CSIRO ASTRONOMY AND SPACE SCIENCE www.csiro.au

Australia Telescope Compact Array (Narrabri, NSW)

R Sala

We measure the spatial coherence function

Image

Spatial Frequency domain

Fourier Transform

ASKAP Array Configuration 36 x 12m Antennas

A34

A35

A27

A25 A1

A16

A15

A26

A9

A1-

Google earth

A32

A31

A30

© 2012 Whereis© Sensis Ply Ltd Image © 2012 GeoEye

A36

A28

A19

A8. A7

A14 A13

A11 A20

A28

2 A24

ASS

A29

A22

26*41*50.19* S 116*67*55.00* E day 375 m

Eye alt 9.99 km

ASKAP u-v coverage

Introducing ASKAP

- The Australian SKA Pathfinder is a radio telescope array that uses new receiver technology to improve field of view and provide unprecedented survey speed
- Covers a section of the radio spectrum surrounding rest-frame neutral Hydrogen emission (700 MHz to 1.8 GHz)
- Consists of 36 individual 12m antennas fitted with PAF receivers
- Currently under construction at MRO, a radio quiet environment
- Begins early science operations with a subset of antennas in 2015
 - Some science is already being done with a prototype 6-antenna array (BETA)

The Murchison Radio Observatory (MRO)

Christmas Island Flying Fish Cove

US Dept of State Geographer © 2012 Whereis® Sensis Pty Ltd © 2012 Google Data SIO, NOAA, U.S. Navy, NGA, GEBCO

27°07'55.46" S 126°00'36.04" E elev 458 m

Ther Sea

Ashmore and Cartier Islands

GentStandy Dorati

Arailura Sea

Australia

Lake Eyre

Solomon Islands

Coral Sea Islands

ASKAP Science Priorities

- Most of the observing time will be spent on major survey projects.
 - ASKAP will cater for large international science teams.
 - Observations will be highly automated and done by facility operators.
- 10 major projects were selected to receive time during this first 5 yrs:
 - Evolutionary Map of the Universe (EMU)
 - Widefield ASKAP L-Band Legacy All-Sky Blind Survey (WALLABY)
 - The First Large Absorption Survey in HI (FLASH)
 - An ASKAP Survey for Variables and Slow Transients (VAST)
 - The Galactic ASKAP Spectral Line Survey (GASKAP)
 - Polarization Sky Survey of the Universe's Magnetism (POSSUM)
 - The Commensal Real-time ASKAP Fast Transients survey (CRAFT)
 - Deep Investigations of Neutral Gas Origins (DINGO)
 - The High Resolution Components of ASKAP (VLBI)
 - Compact Objects with ASKAP: Surveys and Timing (COAST)

ATCA mm receiver vs. ASKAP Phased Array Feed

Data Flow at the Telescope

Digitisers and Beamformers

Data Flow out of the Correlator

- Data rate out of the correlator is roughly 2.5 Gb/s, requiring a dedicated high-speed optical fibre link to a supercomputer.
- Imaging occurs via an automated pipeline. Raw visibilities are too large to archive, so processing needs to be right first time!

Pawsey Supercomputing Centre

pawsey centr

Y IVEC

CSIRO

Cray XC30 - 9440 Cores (Galaxy)

MoniCA

- Monitoring and control system used at various radio observatories
- Supports numerous protocols
 - CA aware (via Cosylab JCA/CAJ)
- Archive PVs
- Policy per PV configuration
- CSS databrowser extension to query MoniCA

http://code.google.com/p/open-monica/

Antenna Drives IOC

- Soft IOC
- Interfaces with antenna Bosch-Rexroth PLC via TCP (asyn)
- Presents stateful antenna drives
 - Stowed, Tracking, Slewing, Idle, etc.
 - Built using State Notation Language
- Coordinate conversion (SLAlib)
- Trajectory generation
- Pointing parameters
- Antenna monitoring

ak08: Drives Antenna View

Bimba

eneral Statu	us										
Version Lock Strii	drives; ng UNLOC	; ASKAPsoft= KED	=release	s/TOS	-1.1; r22	590; 2	014-09	9-19		Cor	nfig
State		ONLINE		Su	bstate		9	stowed		IOC .	Admin
Az	180.	326	Elev		89	9.996	Р	ol		-5.89	8
Az Err	(0	Elev Err			0	P	ol Err		0	
farget Az	180.	3174	Target E	lev	26	.5839	т	arget Pol		-5.9	
IA [00h:00):00.0	Dec	Γ	-26d:4	12:09.6	— Р	A(HADec)		-5.571	.9
A (App)	217.1	1119	Dec (Ap	p) (q	-26.	7027	P	arallactic		0.326	3
A(J2k)	14h:27	7:36.3	Dec(J2k)	ſ	-26d:3	38:21.3					
vjd [56944.2	16129	UT1	201	4/10/14 0	5:11:13	з ь	ѕт		14h:28:	26
lock Err	0.184	4888	Traj Stack		0			Wind Peak		15.5 km/h	
ETC54 PLC :	Status and C	Configuration-	CECT54	12m	V1 01	Az	Lim	E	im	Pol	Lim
ptime	12867.28	PLC S/N	006	-336-9	18	-174	358.	9 15.1	90.0	.78.9	178.9
ASTAT OF	K-BB RUN,	Motion ready	, PLC in r	un	AF AF	K5ST/	AT AII	the axes a	are safe		
ontrol		UN	LOCK	ST	ow	MAINT	TAIN	STOP		STAF	RT
									_	RU	
ommand	stow							Done		OF	F
esponse	ок							Test T	ark 1	Driver C	md
								lest li	dCK	Driver C	

status-Contactor OFF e/Local REMOTE nt el=20 NO nt el=90 STOWED@90 ate NOT OUT otor Active NOT ACTIVE n Error NO n Clk Error NO Overtemp NO rive Error ALL_OK ake Applied ANY_APPLIED ervo Error ALL_NO_ERROR Trajectory YES Stow Flag CLEAR al Alarms No Alarm irce Motor Status... Plots...

- •Composite Antenna IOC to group heterogeneous subsystems
- •Composite Site IOC used to group homogenous antennas
- •EPICS database for both generated from single CSV file which specifies
 - •PV and which subsystem IOCs contain that PV
 - •optional sequence order to serialize the commands, default is parallel execution

Summary Alarm Records (Craig Haskins)

•Automatically generated from DB parsing script

•Using bigASub (128 I/O version of asub) to collect IOC alarms to single point
•PV name of point(s) in alarm can be propagated up

Interface Developments (Xinyu Wu)

					abopioi	5711										~	
	• @	Ð. 🔍	80%	*	e e op	Ψ											
Beta	Main	×															
						BETA	A Main Screen										
eral Status—		Co	ntrol Computer	r					Pedestal				1				
		Powe	r		BMF		Drives	DRX	LO		ANS		-1				
	PAF Anal Syst	log ADC S tem & S2	1 ADC S3 ACC/RSL & s4 /Switch	State	Sub State	St	ate Sub State	S1 S2 S3	5586 - 54 6656 MHz Freq Mon	Digita Analog Com I Rack Rack Sys RSL (Splitte Bin #	Conv Conv F Sys Sys F 1 Bin #2 Bin #3	PAF FDC FC FMC) #1 FC	DC #2				
ak01				ONLIN		01	NLIN Stowe		587				•				
ak03				ONLIN	1	01	NLIN Stowe		587				•				
ak06				ONUN		_	Stown										
	• •		•••	UNCIN		0.	JLOWE		58/			• • •	-				
ak08	•		•••	ONLI		- 0	NLIN Stowe	•••	587	•••	••	• • •	•				
ak08 ak09 ak15 ak02 ak07				ONLI ONLIN ONLIN			NLIN Stowe NLIN Stowe NLIN Stowe		587 587 587 587								
ak08 ak09 ak15 ak02 ak07 COR	S1 State ONLINE	511	Sub State	ONLIN ONLIN ONLIN S2 State	S2 Sub Sta	te	KLIN Stowe		587 587 587 587								
ak08 ak09 ak15 ak02 ak07 COR	S1 State	511	Sub State	ONLIN ONLIN ONLIN S2 State	S2 Sub Ste	te	KLIN Stowe		587 587 587 587		Host Summary	IOC Summary					
ak08 ak09 ak15 ak02 ak07 COR	S1 State ONLINE	513 F	Sub State	ONLIN ONLIN ONLIN S2 State ONLINE DRX Temps	S2 Sub Ste		LLN Stove		587 587 587 587	NS	Host Summary	IOC Summary					
ak08 ak09 ak15 ak02 ak07 COR	S1 State ONLINE BMF Temperatu	S11	Sub State	ONLIN ONLIN ONLIN S2 State ONLINE DRX Tempe S2	S2 Sub Ste	te S4	Stove State: Stove Stove Stove DgRack Temp (C)	Dig Rack RH (%)	587 587 587 587 587	NS Anig Rack RH (%)	tost Summary PAF Temp (°C)	IOC Summary					
ak08 ak09 ak15 ak02 ak07 COR ak07 ak01	S1 State ONLINE BMF Temperatu	59	Sub State	ONLIN ONLIN ONLIN S2 State DRX Tempe S2 79.0	S2 Sub Sta ratures (°C) S3 78.0	te 54 75.0	Stove State: Stove Stove Stove DigRack Temp (C) 26.4	Dig Rack RH (%) 15.8	587 587 587 587 587 587 4.4 4.4 14.6	NS Anig Rack RH (%) 41	PAF Temp (°C) 34.1	IOC Summary PAF RH (%) -10					
ak08 ak09 ak15 ak02 ak07 COR cor ak01 ak01 ak03	S1 State ONLINE BMF Temperatu	51 s F ure (°C) 59 62	SUD State	ONLIN ONLIN S2 State ONLINE DRX Temps S2 79.0 83.0	S2 Sub Sta ratures (°C) S3 78.0 78.0	te 54 75.0 74.0	Line Stove (Line Stove) Line Stove (Line Stove) DigRask Temp (C) 26.4 26.3	Dig Rack RH (%) 15.8 15.6	AnigRack Temp (%) 14.6 16.6	NS Anig Rack RH (%) 41 35	Host Summary PAF Temp (°C) 34.1 31.5	IOC Summary PAF Ret (%) -10 -4					
ak08 ak09 ak15 ak02 ak07 COR ak07 ak01 ak01 ak03	S1 State ONLINE BMF Temperat	511 F ure (°C) 59 62 74	SLO State	ONLIN ONLIN S2 State NLINE DRX Temper S2 79.0 83.0 75.0	S2 Sub Ste ratures (°C) S3 78.0 78.0 75.0	10 10 10 10 10 10 10 10 10 10 10 10 10 1	Burne Burne With Stowe With Stowe DigRack Temp (*C) 26.4 26.3 25.5	Dig Rack RH (%) 15.8 15.6 17.6	ArigRack Teng (°C) 14.6 15.3	NS Ang Rask RH (%) 41 35 48	Flost Summary PAF Temp (°C) 34.1 31.5 34.8	10C Summary PAF Ret (%) -10 -4 -4					
ak08 ak09 ak15 ak02 ak07 COR ak07 ak06 ak08 ak08	S1 State ONLINE BMF Temperate	S1 2 F ure (°C) 59 62 74 60	SLO State 81 81 81 81 81 81 81 81 81 81 81 81 81	ONLIN ONLIN S2 State DRX Tempe S2 79.0 83.0 75.0 70.0	S2 Sub Sta ratures (°C) S3 78.0 78.0 75.0 82.2	54 75.0 78.0 71.0	DigRack Temp (C) 26.4 26.3 25.5 23.9	Dig Rack RH (%) 15.8 15.6 17.6 32.8	AnigRack Teng (°C) 14.6 15.3 15.2 15.8 15.2 15.8 15.2 15.2 15.2 15.2	NS Ang Rask RH (%) 41 35 48 47 7	PAE Temp (°C) 34.1 31.5 34.8 33.3	IOC Summary PAF Ret (%) -10 -4 -4 -7					
ak08 ak09 ak15 ak02 ak07 COR ak07 conmental ak01 ak03 ak06 ak08 ak08	S1 State ONLINE BMF Temperat	515 F 59 62 74 60 61	510 5549 51 51 51 51 51 51 51 51 51 51 51 51 51	ONLI ONLIN ONLIN S2 State DRX Tempe S2 79.0 83.0 75.0 70.0 72.0	s2 Sub Sta ratures (°C) S3 78.0 75.0 82.2 74.0 75.0	54 75.0 71.0 72.0	DgRask Temp (C) 26.4 25.5 23.9 26.2	Dg Rack RH (%) 15.8 15.6 17.6 32.8 24.7 32.0	A AngRaok Temp (C) 14.6 15.3 15.2 17.7	NS Ang Rack RH (h) 41 35 48 47 35	PAF Teng (°C) 34.1 31.5 34.8 33.3 34.0 32.0	IOC Summary PAF Ret (%) -10 -4 -4 -7 -7					
ak08 ak09 ak15 ak02 ak07 COR ak07 conmental ak01 ak03 ak06 ak08 ak09 ak15	S1 State ONLINE BMR Temperat	51 J F 62 74 60 61 72 K Temp	510 State 511 510 610 610 620 610 620 610 620 810 52 Mar Temp	ONLI ONLI ONLIK ONLIK ONLIK S2 State DRX Tempe S2 79.0 83.0 75.0 70.0 72.0 72.0 74.0	S2 Sub Sta ratures (°C) S3 78.0 75.0 75.0 75.0 75.0 75.0 73.0	10 10 10 10 10 10 10 10 10 10 10 10 10 1	DgRack Temp (C) 26.4 25.5 23.9 26.2 23.9	Dg Rack RH (k) 15.8 15.6 17.6 32.8 24.7 22.9	AngRack Teng (C) 14.6 15.3 15.2 17.7 15.0	NS Ang Rack RH (k) 41 35 48 47 35 41	PAF Teng (°C) 34.1 31.5 34.8 33.3 34.0 33.9	DC Summary PAF RH (%) -10 -4 -7 -7 -9					

•Experimenting with WebOPI / WebAlarm

•Some useful additions to CSS alarm handling, will contribute back to project

Observing Large Areas of the Sky (50 square degrees)

5.5 degrees

CSIRC

Image made by Ian Heywood