Writing Physics Applications and Services with EPICS V4

Greg White, SLAC, EPICS Fall 2014 Meeting, Saclay.

SLAC Accelerators: LCLS (FEL), FACET (e- plasma wakefield)

EPICS V4 by example of optics

- Demonstrate EPICS V4 by example of key goal of accelerators minimize emittance
- As described by the "Optics"
 - Twiss Parameters
 - Response matrices
- Example Applications
- Performance
- Demo

Emittance (\mathcal{E}) is central to accelerator figures of merit. Low Emittance = Good.

Colliders: $\mathcal{E} \propto 1 / \text{Luminosity}$

$$L = H_D \frac{f N_1 N_2}{4\pi \sigma_x \sigma_y}$$

Where:

f = collision frequency $N_{\mu}N_{2}$ = Charge in bunches $\sigma_{x,y}$ = RMS beam size (horiz, vert) H_{p} = Beam-beam focusing factor

Free Electron Lasers: $\varepsilon \propto 1 / Gain$

$$G = -rac{m_e c^2 \gamma_r n_e}{arepsilon_0 E_0^2 k_u} \cdot < \dot{\psi} >$$

Off-axis e- → Diff focusing (K) → Don't lase

Beam Radiotherapy:
E ∝ 1/Dose Quality &
1/Dose Accuracy

 $\varepsilon \Leftrightarrow$ "divergence"

P. Tenenbaum, N. Thompson, M. Schippers, K. Markey

Physics Applications ~ Minimizing Emittance

Emittance is basically beam size or really, the propensity of the beam to change size, as it propagates

Example: Vertical Emittance as measured at one wire:

Emittance Scan on WIRE: LI28:144

Particle Bunch

Bunch in frame of the laboratory, looks uniform, all heading in same direction

From illustration in lecture by Nicolas Delarue

Particle Bunch

Bunch in their frame, in the Center of Mass of the bunch, all heading every which way, with different momenta

Product of particles' position x momenta = Emittance

From illustration in lecture by Nicolas Delarue

Emittance ellipse in trace-space

- Aggregate description of particles in their frame is given by Emittance (ε) ellipse in trace-space
- Quantitatively: Emittance is the area of ellipse, over π
- where "area" might be defined as 1 or 2 sigma RMS, or in %.

 $\mathcal{E}=\gamma x^2 + 2\alpha x x' + \beta x'_2$

N. Delerue

Emittance and focusing

Along a beamline the orientation and aspect ratio of beam ellipse in *x*, *x*' plane varies, but area $\pi \varepsilon$ remains constant

Beam width along z is described with $W(z) = \sqrt{\beta(z)} \varepsilon$

Hans Braun

So, the Twiss parameters describe the beam shape, and it's evolution in space

So, the Twiss parameters describe the beam shape, and it's evolution in space

The beam sausage

Orbit description

R matrix from A to B

R matrix from A to B R12 is influence of X angle at A on X position at B

R matrix from A to B R34 is influence of Y angle at A on Y position at B

R matrix from A to B

Response Matrices are the basis of most online accelerator optimizations

Example 1, a so-called "4-bump": calculating corrector settings to get a particular offset and angle somewhere, like at a diagnostic device

4 equations in 4 unknowns (the 4 desired corrector angles)

Orbit Correction (aka Steering)

Minimizing the RMS of the Orbit

Solves the system of equations that describe the influence of every dipole corrector on every BPM:

$$T_{12}^{11}\Delta\theta_1 + T_{12}^{12}\Delta\theta_2 + \dots + T_{12}^{1N}\Delta\theta_N = \Delta BPM_1$$

$$T_{12}^{21}\Delta\theta_1 + T_{12}^{22}\Delta\theta_2 + \dots + T_{12}^{2N}\Delta\theta_N = \Delta BPM_2$$

$$\vdots$$

$$T_{12}^{M1}\Delta\theta_1 + T_{12}^{M2}\Delta\theta_2 + \dots + T_{12}^{MN}\Delta\theta_N = \Delta BPM_M$$

ſ	$T^{11}_{12} \\ T^{21}_{12}$	$T^{12}_{12} \\ T^{22}_{12}$	$T^{13}_{12} \\ T^{23}_{12}$	 T_{12}^{1N} T_{12}^{2N}] [${\scriptstyle \Delta \theta_1 \ \Delta \theta_2}$.]	$\left[\begin{array}{c} \Delta b_1 \\ \Delta b_2 \end{array} \right]$
	- M1	-M2	: M3	-MN	·		=	
L	T_{12}^{M1}	T_{12}^{M2}	T_{12}^{M3}	 T_{12}^{MN}	JL	$\Delta \sigma_N$.	1	

A may be very large (millions), calculated from 1000s of R matrix elements, which must be from a very well known precomputed model

The R-matrix parameters describe how changes in each place in the beam, affect all the others

What's peculiar about optics PVs?

- Complex data type: a set for each lattice element: structures and matrix
- Further a set of sets at any point in time
- So, both device and whole machine oriented
- Parameterized:
 - Beginning, middle, end of thick elements
 - Must know design values and those from real machine
 - Want values from simulation, and from controlled conditions both

Conclusion: EPICS V4 for complex types and RPC

EPICS V4 services at SLAC

- Names. Now using old system. ChannelFinder based one in prototype
- Twiss
- R-matrices
- Elements (aka lattice)
- Oracle database general service (pvname -> sql lookup table)
- Archive (in development)
- Orbit (planned)

Interfaces from command line, c++, java, easyJava, Matlab

Model App

Orbit Response App

Compares measured to modelled response (R) matrices, that is, downstream response of the beam's position to a change in its angle upstream

Emittance Measurement App

Uses transfer matrices (R-matrices) and profile measurement to compute twiss and hence emittance

Emittance Measurement App

Uses transfer matrices (R-matrices) and profile measurement to compute twiss and hence emittance

Emittance Application - [Emittance-sca	an-WIRE_LI24_705-2014-10-11-224951.mat]X								
LCLS Emittance Measurement									
	Profile 11-Oct-2014 22:49:51 Asymmetric at -7.53 kG								
IN20 LI21 LI24 LI28 LTU1 UND1 MAT Model	4000								
Save Save as Save Images Load Config Load Prof -> Log Show Image Save Config	3500 - xarea = 1.108± 0.00 Mcts - xmean = 1.14± 0.00 mm xrms = 141.2± 0.53 μm - 3000 - xskew = 0.22± 0.01 - xkurt = 0.03± 0.00 - -								
Quad Control	2500 -								
Quad Scan 👻 QUAD:IN20:525 👻 Auto Val	월 2000 -								
WS02 Quad Values	1500 -								
Quad Low Quad High	1000 - 🥇 🐧 -								
Current Wire Y -7 kG -4 kG	500 -								
Reset Quad Set Quad									
Abort Scan Quad Actual -3.64 kG	-500 0 500 1000 1500 2000 2500 3000								
▼No heater (OTR2) Quad Reset -3.64 kG	WINE:LI24:/US Position (µm)								
Analysis	Normalized Phase Space								
Image: Strain of the second	2 15 1 0.5 0 0.5								
Method Select Asymmetric Average Res Slices 0	-1 -1.5 -2 -2 -1 0 1 2 Norm. Position								
Cut level 0.05 Img Process Median									

pvAccess vs CA performance

Largely the same for 1pv up to 100 elem. Then pvAccess faster by up to factor 2-4 for larger arrays.

pvAccess vs CA many channels

CA largely faster for many small channels, pvAccess faster for many large channels

Status, Conclusions

- 5 V4 services in place now. Working, fast, reliable.
 2 more very soon.
- LCLS and LCLS-II projects bought in.
- 2 optics modelling services now: defined conditions (XAL) and simulator (MAD). Working to make both MAD
- Next: Add computation of optics from archived values

References

- Colliders 101, HMC Physics Colloquium 02-Apr-2002, Peter Tenenbaum.
- Introduction to Free-Electron Lasers, Neil Thompson, ASTeC, http:// www.stfc.ac.uk/ASTeC/Resources/PDF/Thompson_FELs.pdf
- Novel Techniques in Proton Therapy, ICTR-PHE 2012, Marco Schippers, PSI, https://espace.cern.ch/ICTR-PHE2012-slides/Session%204%20Novel %20Technologies%20in%20Radiation%20Therapy/ICTR-Schippersnoveltechniques-120228-pdf.pdf
- Divergence reduction of laser accelerated proton beams, K. Markey et al, https://www.stfc.ac.uk/CLF/resources/PDF/ ar06-07_s1_divergencereduction.pdf
- Quadrupole Scan, S. Bernal, D. Stratakis, 2008, <u>http://uspas.fnal.gov/materials/</u> 08UMD/Emittance%20Measurement%20-%20Quadrupole%20Scan.pdf,