
MRF Timing System IOC Status

M Davidsaver1,J Shah1,E Bjorklund2

NSLSII Brookhaven National Lab1

LANCSE Los Alamos National Lab2

EPICS Collaboration Meeting Fall '11

Outline

Timing Background

Current Developments

In Depth

Terms

I Event

I A point in time. Often de�ned in relation to another point.

I Code

I An 8-bit number used to identify an event

I EVG

I Event Generator - Broadcasts event codes

I EVR

I Event Receiver - Decodes events and takes local actions

I MRF

I Micro Research Finland Oy - http://www.mrf.fi/

http://www.mrf.fi/

Architecture

Components

I EVG

I EVR

I Repeater

I Hub

I Concentrator

I Switch

Synchronization

I Generator (EVG) accepts input from external RF clock (no
PLL)

I 8b10 encoding (16-bit frame)

I Event link bit rate 20x event code rate
I 500 MHz RF÷4 =125 MHz event×20 =2.5 GHz link

I 8-bit event code, 8-bit data (Distributed Bus)

I Each Receiver (EVR) has a PLL tuned ±20 ppm(10 kHz @
500MHz)

I Dynamic tuning possible

Global Time Distribution

I Timestamp in two parts: seconds+counter

I Seconds distrubuted as 32-bit unsigned integer

I Counter driven by Event clock, Distributed Bus bit 2, or event
code 0x7d

I One event code loads seconds and zeros counter

I Use PPS from GPS receiver

Use for NSLSII

I EVG in main computer room with fanouts to all 30 cells, RF,
and injector buildings.

I All pulls have same length.

I Each cell has additional local fanouts

I VME-EVRRF-230 is standard equipment.

I TTL for general triggers
I CML for special cases. Output �ll pattern. Trigger kickers.

I cPCI-EVRTG-300 + GUNRC-300 to trigger electron gun.

I PMC-EVR-230 in some Linux servers (softIoc hosts)

I Use PMC to PCIe carrier board (transparent to software)
I More precise timestamps
I One local TTL input

mr�oc2

I Features:

I Only Base recordtypes
I As dynamic as possible
I PCI support via devLib2

I EVR

I Dynamic mapping (Mapping RAM)
I Data bu�er Tx/Rx (Compatible with 1.x)

I EVG

I Fully modi�ble event sequence
I Timestamp distribution w/o special hardware

I Documentation

Current Status

I EVR

I Working with prerelease �rmware
I Tested with VME64x, cPCI, and PMC

I EVG

I VME model working
I cPCI model not supported (no access to hardware)

I Deployed at BNL for NSLSII teststands (LINAC, BPMs, and
PS controllers)

I Version 2.0.0 released

Receiver Hardware

Downstream
 Event Link

Event Codes DBusClock Phase

Mapping RAM

Pulse Generators Special
Functions

Prescaler/
 Dividers

Inputs Outputs

Upstream
Event Link

Event Codes DBus

Receiver Hardware

I Programmable pulse generator

I Triggered by event code(s)

I Phase locked frequency source (Fevt/i)

I Global timestamp receiver

I Wall clock
I Event code # received
I Local input

I Local inputs create timestamps or send upstream

I Available as: VME, cPCI, and PMC

EVR Mapping Ram

I Many-to-many mapping of event code to function

I Trigger pulse generator
I Reset prescalers
I Timestamp functions

I Most cases 1-to-1 (code 17 triggers pulse gen. 4)

I Some are small-to-small

I Few are many-to-many (FIFO, Event log)

Mapping Records

I One record per pairing

I Default DB maps 3
events

record (longout , "pul4 : t r i g 1 ") {
f i e l d (DTYP, "EVR Pulser Mapping")
f i e l d (OUT, "@OBJ=EVR1: Pul0 , Func=Trig")
f i e l d (VAL , "0x40")
}

record (longout , "blk1") {
f i e l d (DTYP, "EVR Mapping")
f i e l d (OUT, "@OBJ=EVR1, Func=Bl ink ")
f i e l d (VAL , "0x40")
}

Data Bu�er

I Bu�er reception in two stage. High priority thread reads from
hardware places in FIFO. Lower priority thread takes from
FIFO and runs callback list.

I Waveform device support to receive. Does endian conversion
for multibyte types.

I Plan to use this to distribute �ll pattern for NSLSII.

Event FIFO Bu�er

I Arrival of an �interesting� event is recorded in a hardware FIFO
bu�er.

I I/O Intr scan and callback list.

I longin device support to process on event reception.

I Throttling to prevent too fast events from taking 100% of
CPU. Limit bu�ered events to a given rate. Also, do not run
callback list until all previous processing is complete.

Timestamp Validation

I Must prevent invalid timestamps from propogating into
generalTime.

I Several times a miscon�guration caused one second tick to be
sent too often, or out of sync.

I Firmware bug (now �xed) caused occasional invalid reads.

I EVR must receive 5 sequential updates before it will start
using time. Invalid if out of order time is received.

CML/GTX Pattern Outputs

I Higher resolution. 20x EVRRF, 40x EVRTG (e�ective 8x)

I Output multi-bit patterns

Generator Hardware

I Send periodic event and/or data

I Send event sequences

I Preset list of times and codes (eg. linac shot or booster ramp)

I Currently VME only, in future cPCI only.

Timestamp

I Synchronize to GPS without custom electronics.

I O� the shelf GPS receiver with NTP server and 1Hz TTL
output.

I Bu�ered with Rubidium oscillator for high precision. Continues
running if GPS 1Hz is lost.

I 1Hz send special event code and interrupts CPU

I Special event code 0x7D marks start of a second (hardware
only)

I Interrupt sends next second bit by bit. POSIX time by default.

EVG Sequences

I Example. Timeline for
injection/top o�

I Start insertion kicker
ramp up

I wait 100us

I Trigger Klystron
modulators

I wait 20us

I Trigger Klystron

I wait 500ns

I trigger e−gun

I wait 10us

I Start insertion kicker
ramp down

Delay Code

0 0x10

12500 0x20

2500 0x25

61 0x40

1250 0x12

Note: This is how it looks in
hardware

Sequence Use Cases

I NSLSII Booster is 1
5 diameter or Storage ring.

I Filling/top o� process involves multiple injections

I Need to control how many bunches and where they go

I Use timing system to select which sector to �ll

I �Fill Manager� process sets booster extraction delay
I Move ≥ 1 events

I Allow programatic manipulation w/o complicating client(s)

Sequence Representation

I 2 waveforms (codes and times)

I Clients have to know array index
I Ordering

I Trigger source/mode

I Control (commit, (un)load, enable/disable)

Sequence Management

I Manage user interactions with sequence ram

I Current hardware supports two independent sequences.

I Single shot or repeating

I Don't modify while running

Model

Sequencer Work�ow

1. Modify scratch sequence

I DB/CA operations of individual records (synchronous device
supports)

I CA put w/ callback

2. Commit

I Single DB/CA operation
I Updates complete sequence

3. Sync

I When loaded, or at end of run if already loaded
I Automatic

Interface

Sequence Control

I Run Mode

I Single
I Disarm after one run
I Normal
I rearm after each run
I Automatic
I continuous run

I Trigger Source

I For Single and Normal

I Units

I Meaning of time delay

I Commit

I Propogate changes to
hardware

Sequence Control (2)

I Load/Unload

I (De)Allocate hardware
resources to run this
sequence

I Enabled

I Trigger permit

I Disable

I Prevent further triggers.
If already triggered, run
to completion

I Pause

I Stop running sequence
w/o reset.

I Abort

I Immediately halt

Interface

Specify sequence. Units of
Timestamp de�ned for each
sequence.
Note: Pictured is a small
PyQt+cothreads script to allow
editing sequence waveforms in a
table.

Demo

Attempt to run live demo.

	Timing Background
	Current Developments
	In Depth

