
Writing Widgets for BOY
&
A brief introduction to
XYGraph Library

Xihui Chen
chenx1@ornl.gov
Fall 2010 EPICS Collaboration Meeting

2 Managed by UT-Battelle
 for the U.S. Department of Energy

What is a BOY widget?

•  The brick to construct an OPI
• A graphical and function unit with a set of

properties
• No limitation on its function

–  Decoration
–  Display PV value
–  Set PV value
–  Container
–  Anything for your needs

3 Managed by UT-Battelle
 for the U.S. Department of Energy

BOY Architecture

Abstract Widget

Macro 

GEF 

Proper-es 

U-lity 
PV 

Eclipse 

OPI Editor

Pale5e Navigator 

Outline 

Console 

Toolbar 

Proper-es Sheet 

Context Menu 
Script 
Engine 

Ac-ons 

OPI Runtime

Toolbar 

Context Menu 

Console 

XML 
Reader 

& 
Writer 

Color & Font Macro 

BOY Framework

CSS PlaIorm 

Yes, you can plug your own widgets to BOY!

4 Managed by UT-Battelle
 for the U.S. Department of Energy

MVC Pattern

• All BOY widgets should follow Model-View-Controller
Pattern
–  Separate responsibilities
–  Decouple complexity
–  Increase flexibility
–  Code reuse

5 Managed by UT-Battelle
 for the U.S. Department of Energy

Widget Model

• Definition
–  Defines the set of properties
–  Stores the according values
–  All information of the widget should be stored in its model

6 Managed by UT-Battelle
 for the U.S. Department of Energy

Widget Model

•  Implementation
–  All widgets models must subclass AbstractWidgetModel

•  Provided the basic properties for all widgets, such as Width, Height, X,
Y, Name, Foreground Color, Background Color, Rules, Scripts,
Actions…

–  All PV widgets should subclass AbstractPVWidgetModel
•  Provided the basic properties for all PV widgets, such as PV Name, PV

Value, border/foreground/background color alarm sensitive
–  All Container Widgets must subclass AbstractContainerModel

•  Provided the functions to manage children
•  Macros Property

7 Managed by UT-Battelle
 for the U.S. Department of Energy

Widget Model Example

public class SimpleBarGraphModel extends AbstractPVWidgetModel{

/** Lower limit of the widget. */
public static final String PROP_MIN = "max"; //$NON-NLS-1$

/** Higher limit of the widget. */
public static final String PROP_MAX = "min"; //$NON-NLS-1$

public final String ID = "org.csstudio.opibuilder.widgetExample.SimpleBarGraph"; //$NON-NLS-1$

/**
 * Initialize the properties when the widget is first created.
 */
public SimpleBarGraphModel() {

 setForegroundColor(new RGB(255, 0, 0));
 setBackgroundColor(new RGB(0,0,255));
 setSize(50, 100);

}

@Override
protected void configureProperties() {

 addProperty(new DoubleProperty(PROP_MIN, "Min", WidgetPropertyCategory.Behavior, 0));
 addProperty(new DoubleProperty(PROP_MAX, "Max", WidgetPropertyCategory.Behavior, 100));

}

@Override
public String getTypeID() {

 return ID;
}

...
}

8 Managed by UT-Battelle
 for the U.S. Department of Energy

Widget Properties
• Currently supported property types:

• Create your own property type by extending
org.csstudio.opibuilder.proper/es.AbstractWidgetProperty

Property Type Example Proper/es
Boolean Property  Enabled, Visible 

Integer Property  Height, Width, X, Y 

Double Property  Meter.Level HIHI, Meter.Maximum 

Combo Property  Border Style 

String Property  Name, PV Name, Text 

Color Property  Background Color, Foreground Color 

Font Property  Font 

File Path Property  Image.Image File, Linking Container.OPI File 

PointList Property  Polyline.Points, Polygon.Points 

Macros Property  Macros 

ColorMap Property  IntensityGraph.Color Map 

String List Property  Items 

Rules Property  Rules 

Ac-ons Property  Ac-ons 

Scripts Property  Scripts 

9 Managed by UT-Battelle
 for the U.S. Department of Energy

Widget Figure (View)

• Definition
–  The graphical representation of the widget
–  Response to mouse or keyboard event
–  No dependency on model and controller.
–  It should be autonomous, which means it should have its own

behavior independent from model and controller

•  Implementation
–  Need Draw2D knowledge

•  http://help.eclipse.org/ganymede/index.jsp?topic=/
org.eclipse.draw2d.doc.isv/guide/guide.html

–  All widgets figure must be an instance of
org.eclipse.draw2d.IFigure

–  In most cases, just subclass org.eclipse.draw2d.Figure or other
existing figures will make it easier.

10 Managed by UT-Battelle
 for the U.S. Department of Energy

Widget Figure Example
public class SimpleBarGraphFigure extends Figure {

private double min =0;
private double max = 100;
private double value = 50;

@Override
protected void paintClientArea(Graphics graphics) {

super.paintClientArea(graphics);
//fill background rectangle
graphics.setBackgroundColor(getBackgroundColor());
graphics.fillRectangle(getClientArea());

//fill foreground rectangle which show the value's position
graphics.setBackgroundColor(getForegroundColor());
//coerce drawing value in range
double coercedValue = value;
if(value < min)

 coercedValue = min;
else if (value > max)

 coercedValue = max;
int valueLength = (int) ((coercedValue-min)*getClientArea().height/(max-min));
graphics.fillRectangle(getClientArea().x,
getClientArea().y + getClientArea().height -valueLength,
getClientArea().width, valueLength);

}

public void setValue(double value) {
this.value = value;
repaint();
}

public double getValue() {
return value;
}
...

}

11 Managed by UT-Battelle
 for the U.S. Department of Energy

Widget Editpart (Controller)

• Definition
–  The link between model and view
–  Responsible for the behavior of the widget when model

properties value changed
–  Responsible for initialization and deactivation

•  Implementation
–  All widgets editparts must subclass AbstractWidgetEditPart
–  All PV widgets should subclass AbstractPVWidgetEditPart
–  All Container Widgets must subclass AbstractContainerEditpart

12 Managed by UT-Battelle
 for the U.S. Department of Energy

Widget Editpart Example
public class SimpleBarGraphEditpart extends AbstractPVWidgetEditPart {

/**
 * Create and initialize figure.
 */
@Override
protected IFigure doCreateFigure() {

SimpleBarGraphFigure figure = new SimpleBarGraphFigure();
figure.setMin(getWidgetModel().getMin());
figure.setMax(getWidgetModel().getMax());
return figure;

}

@Override
protected void registerPropertyChangeHandlers() {

// The handler when PV value changed.
IWidgetPropertyChangeHandler valueHandler = new IWidgetPropertyChangeHandler() {

public boolean handleChange(final Object oldValue,
final Object newValue,
final IFigure figure) {
if(newValue == null)
return false;
 ((SimpleBarGraphFigure) figure).setValue(ValueUtil.getDouble((IValue)newValue));
return false;

}
};
setPropertyChangeHandler(AbstractPVWidgetModel.PROP_PVVALUE, valueHandler);

//The handler when max property value changed.
IWidgetPropertyChangeHandler maxHandler = new IWidgetPropertyChangeHandler() {

public boolean handleChange(Object oldValue, Object newValue, IFigure figure) {
 ((SimpleBarGraphFigure) figure).setMax((Double)newValue);
 return false;

}
};
setPropertyChangeHandler(SimpleBarGraphModel.PROP_MAX, maxHandler);
…

}
…
}

13 Managed by UT-Battelle
 for the U.S. Department of Energy

Register the widget with BOY

• Use the standard Eclipse extension point mechanism
• Extension point: org.csstudio.opibuilder.widget

14 Managed by UT-Battelle
 for the U.S. Department of Energy

Integrate the widgets with CSS

• CSS Developer
–  Include the widgets plugin into your build

• CSS User
–  Export it to a deployable plugin JAR file and copy it to your

CSS dropin folder

• Same as adding a general plugin to an Eclipse RCP

15 Managed by UT-Battelle
 for the U.S. Department of Energy

Connect to PV

• AbstractPVWidgetEditpart
–  Handled the connection to PV
–  Handled the disconnection border
–  Handled the alarm sensitive border/foreground/background

color
–  Mapped the PV value change event to property change event

of Prop_PVValue

• Set PV value
–  AbstractPVWidgetEditpart.setPVValue(PV_PropID, Value)

16 Managed by UT-Battelle
 for the U.S. Department of Energy

Be aware of resources usage

• Color, Font, Image and Cursor need to be disposed
explicitly

• Use org.csstudio.platform.ui.util.CustomMediaFactory if
you want the resources to be disposed by system
automatically.

17 Managed by UT-Battelle
 for the U.S. Department of Energy

Available Resources

•  org.csstudio.swt.xygraph
–  Linear Scale
–  SWT XYGraph

•  org.csstudio.swt.widgets
–  Round Scale
–  Existing Widgets

18 Managed by UT-Battelle
 for the U.S. Department of Energy

Simple Bar Graph Widget Demo

19 Managed by UT-Battelle
 for the U.S. Department of Energy

SWT XYGraph Library

20 Managed by UT-Battelle
 for the U.S. Department of Energy

Introduction

• Based on Draw2D, so it can be used in any SWT or GEF
based applications

• Good for scientific and engineering 1D or 2D data
plotting

• Used in BOY and Data Browser

21 Managed by UT-Battelle
 for the U.S. Department of Energy

SWT XYGraph Library
•  Support line chart, scatter chart, bar chart, step chart, area chart and more…

•  Automatically zoom, Rubberband Zoom, Horizontal Zoom, Vertical Zoom

•  Panning on both graph area and axes

•  Autoscale

•  Annotation support

•  Multiple axes support

•  Log scale, date time format support

•  Grouping legends by axes

•  Runtime Configuration for everything

•  Customized data provider support

•  Taking snapshot

•  Undo/Redo

22 Managed by UT-Battelle
 for the U.S. Department of Energy

Architecture
• Component Structure

–  Easy to have arbitrary number of Axes or Traces.
–  Easy to configure the visibility and properties for each component

•  IDataProvider
–  Allow Customized Data Provider with customized data storage structure or

data source

23 Managed by UT-Battelle
 for the U.S. Department of Energy

Comparison with JFreeChart

•  JFreeChart
–  Cannot be used in GEF

application
–  Low performance for real

time data plotting
•  You have to copy all your data

to its predefined data structure
for every plotting, which will
waste lots of CPU and memory.

–  Good at static graph because
of its comprehensive chart
types.

• SWT XYGraph
–  Only support numeric value

plots on 2D axes.
–  Does not support Pie Chart,

Gantt Charts, Polar chart…
–  Can be used in GEF, SWT

applications
–  Armed with comprehensive

interactive tools, such as
zoom, panning, undo/redo

–  Good at real time data plots

24 Managed by UT-Battelle
 for the U.S. Department of Energy

A simple XYGraph Example
public class SampleView extends ViewPart {

public SampleView() {
}

@Override
public void createPartControl(Composite parent) {

 //use LightweightSystem to create the bridge between SWT and draw2D
final LightweightSystem lws = new LightweightSystem(new Canvas(parent, SWT.NONE));

//create a new XY Graph.
ToolbarArmedXYGraph toolbarArmedXYGraph = new ToolbarArmedXYGraph();
//set it as the content of LightwightSystem
lws.setContents(toolbarArmedXYGraph);
XYGraph xyGraph = toolbarArmedXYGraph.getXYGraph();
xyGraph.setTitle("Simple Example");
//create a trace data provider, which will provide the data to the trace.
CircularBufferDataProvider traceDataProvider = new CircularBufferDataProvider(false);
traceDataProvider.setBufferSize(100);
traceDataProvider.setCurrentXDataArray(new double[]{10, 23, 34, 45, 56, 78, 88, 99});
traceDataProvider.setCurrentYDataArray(new double[]{11, 44, 55, 45, 88, 98, 52, 23});

//create the trace
Trace trace = new Trace("Trace1-XY Plot",
xyGraph.primaryXAxis, xyGraph.primaryYAxis, traceDataProvider);
//set trace property
trace.setPointStyle(PointStyle.XCROSS);
//add the trace to xyGraph
xyGraph.addTrace(trace);

}
}

25 Managed by UT-Battelle
 for the U.S. Department of Energy

That’s it!

26 Managed by UT-Battelle
 for the U.S. Department of Energy

Summary

• BOY Widgets
–  All BOY widgets must follow the MVC pattern
–  Each widget should have at least three classes: Model,

Editpart and Figure
–  Using Eclipse extension point to register widgets with BOY

• XYGraph
–  It is good at drawing real time numeric data compare to

JFreeChart

27 Managed by UT-Battelle
 for the U.S. Department of Energy

Thank you!

• See BOY online help Creating Customized widget for
more details

• XYGraph homepage:
–  http://code.google.com/p/swt-xy-graph/

