

Stanford Synchrotron Radiation Laboratory

Timing and Event System

S. Allison, M. Browne, B. Dalesio, J. Dusatko,R. Fuller, A. Gromme, D. Kotturi, P. Krejcik,S. Norum, D. Rogind, H. Shoaee, M. Zelazny

Apr 25, 2007 EPICS Collaboration Meeting

Stanford Synchrotron Radiation Laboratory

Outline

- Overview HW and Reqts
- Hardware Test Stand
- Long-Haul Fiber Issues and Plans
- Outstanding Software Issues and Tasks
- Wish List

Modulator

Triggers

Stanford Linear Accelerator Center

Stanford Synchrotron Radiation Laboratory

Hardware Block Diagram 2007 Commissioning

Apr 25, 2007 EPICS Collaboration Meeting

Stanford Synchrotron Radiation Laboratory

Micro-Research Finland Oy

Event Generator (EVG-200)

SFP transceiver
Optical signal to EVRs (fan-outs)

RF input

- Event clock
- divided from RF
- <mark>/1*</mark>,/4, ... /12

Line syncronisation input 360 Hz

*SLAC addition

Apr 25, 2007 EPICS Collaboration Meeting

SLAC PNET Receiver

Receives the MPG broadcast sent to SLC micros and passes it to the EVG

EVR Fan Out module

Stanford Synchrotron Radiation Laboratory

Event Receiver – PMC version

Event Receiver (EVR-200-RF)

Apr 25, 2007 **EPICS** Collaboration Meeting

Stanford Synchrotron Radiation Laboratory

Modifications to EVG

119MHz clock input

In the absence of a ÷1 input, a daughterboard was made containing a clock receiver IC to allow us to input 119MHz directly

EVG AC-line input

360Hz fiducial input was rerouted with firmware change to avoid addition of jitter from internal 10 kHz clock and phase shifter

Tallies for 2007, Plans for Next Phase

- # EVRs = 31 installed (mostly PMC)
 - Add 60 more EVRs 34 VME, 26 PMC
- $\blacksquare # IOCs with EVRs = 28$
 - Add 40 more IOCs with EVRs
- # EVR Fanouts = 4
 - Add 5 more fanouts (1 every 200m)
- # Hardware Triggers = 120+
 - All TTL except 2 NIM triggers for QDCs
 - Most require short cables (except LLRF)
 - Add ? more

Apr 25, 2007 EPICS Collaboration Meeting

Stanford Synchrotron Radiation Laboratory

Timing Requirements

Maximum trigger rate	360 Hz
Clock frequency	119 MHz
Clock precision	20 ps
Coarse step size	8.4 ns ± 20 ps
Delay range	>1 sec
Fine step size	20 ps
Max timing jitter w.r.t. clock	2 ps rms
Differential error, location to location	8 ns
Long term stability	20 ps

Apr 25, 2007 EPICS Collaboration Meeting

Stanford Synchrotron Radiation Laboratory

Event System Requirements Event Generator IOC:

Send out proper event codes at 360Hz based on:

- PNET pattern input (beam code and bits that define beam path and other conditions)
- Add LCLS conditions such as BPM calibration on off-beam pulses, diagnostic pulse etc.
- Future event codes also based on new MPS and user input
- Send out system timestamp with encoded pulse ID from PNET
- Send out PNET pattern to be used by SLC-aware IOCs
- Manage user-defined beam-synchronous acquisition measurement definitions (event definition or EDEF)

Check for match between user EDEFs and input PNET pattern at 360Hz and tag matches in outgoing pattern

Stanford Synchrotron Radiation Laboratory

Event System Requirements, cont

Event Receiver IOC:

- Set trigger delays, pulse widths, and enable/disable via user requests (not yet done on a pulse-by-pulse basis)
- Set event code per trigger (triggering done in HW when event code received)
- Receive event pattern 8.3 msec before corresponding pulse
- Perform beam-synchronous acquisition based on tags set by EVG in the event pattern
- Perform beam-synchronous acquisition for the SLCaware IOC based on the PNET part of the event pattern
- Process pre-defined records when specific event codes are received (not yet available – bug!)

Apr 25, 2007 EPICS Collaboration Meeting

I CL C		Stanford Linear A	ccelerator Center
EVG Event	Time Lir	Stanford Synchrotron Rad	iation Laboratory
360Hz			
iducial F0 (n=0)	F1 (n=1)	F2 (n=2)	F3 (n=3)
Time (msec) 0 1.0	2.8	5.6	8.3 9.3
HW starts sending event codes, starting th fiducial event code	R1	R2	R3
Receive Fn+3 PNET, determine Fn+3 LCLS P() pattern, and advance pipeline (n-2->n-1->n)	P1	P2	P3
Send LCLS pattern LO	L1	L2	L3
Set Event Codes in Other RAM based on the last patterns for Fn+1	E2	E3	E4
120Hz BEAM B-3			B0
Apr 25, 2007 EPICS Collaboration Meeting		Stephan saa@slac.sta	ie Allison nford.edu

F

W

Trigger Control Display

IN20-LI21 Events / Tri	ggers – IN	20 Stripline E	3PMs 2-G1			All TREFs] [Exit
Description	Diag	Polarity	Width(ns)	TDES(ns)*	TCTL	* EVR Diags	w.r. to T Trig	REF Ch
BPM2		Inverted	100	750	Enabled	EVR:IN20:BP01	ттв	0
BPM3		Inverted	100	800	Enabled	EVR:IN20:BP01	ттв	1
BPM5		Inverted	100	750	Enabled	EVR:IN20:BP01	ттв	2
BPM6		Inverted	100	800	Enabled	EVR:IN20:BP01	ТТВ	3
BPM8		Inverted	100	800	Enabled	EVR:IN20:BP01	ТТВ	4
BPMG1		Inverted	100	800	Enabled	EVR:IN20:BP01	ТТВ	5
Spare		Normal	100	10	Enabled	EVR:IN20:BP01	ТТВ	6
BPM2 Calibration		Normal	100	3900	Enabled	EVR:IN20:BP01	ТТВ	7
BPM3 Calibration		Normal	100	3900	Enabled	EVR:IN20:BP01	ТТВ	8
BPM5 Calibration		Normal	100	4000	Enabled	EVR:IN20:BP01	ТТВ	9
BPM6 Calibration		Normal	100	4000	Enabled	EVR:IN20:BP01	ТТВ	10
BPM8 Calibration		Normal	100	4000	Enabled	EVR:IN20:BP01	ТТВ	11
BPMG1 Calibration		Normal	100	3950	Enabled	EVR:IN20:BP01	ТТВ	12
Spare		Normal	100	10	Enabled	EVR:IN20:BP01	ТТВ	13
Spare trigger 1		Normal	100	10	Enabled	EVR:IN20:BP01	FP	0
Spare trigger 2		Normal	100	10	Enabled	EVR:IN20:BP01	FP	1
Spare trigger 3		Normal	100	10	Enabled	EVR:IN20:BP01	FP	2
Spare trigger 4		Normal	100	10	Enabled	EVR:IN20:BP01	FP	3
Stripling PPMs 9-15 Stripling PPMs S1-S3 L121 Stripling PPMs A11 M14 Toro/EC/PL on								

PRODUCTION

04/13/2007 18:28:48

EVG Displays

IN20 EVG Events							
Develo	pme	nt					
Name	Event Code	Delay I (Clock (Ticks)	Delay Ei Insec)	nable	Every Cycle		
Fiducial	1	0	0		1		
Heartbeat	122	1	1		1		
360Hz	9	12950	108824	1	1		
Modulo 36*	201	13000	109244	1	1		
* Event cod	es cycl	e between	201 to 23	36.			
Ti	me Slot	: 1 to 6 Ev	ent Code	S	В	eam	Mask
	LCLS	6 Beam Ev	ents		Ō	ode	Setup
Beam Full	140	11900	100000	1			
Beam&60Hz	141	11901	100008	1			
Beam&30Hz	142	11902	100017	1			
Beam&10Hz	143	11903	100025	1		1	Masks
Beam & 5Hz	144	11904	100034	1			
Beam & 1Hz	145	11905	100042	1			
Beam&0.5Hz	146	11906	100050	1			
Full N-1	147	11907	100059	1	0	1	Masks
Full N-2	148	11908	100067	1	0	1	Masks
Beam TBD1	149	11909	100076	0	0	1	Masks
Burst	150	11910	100084	0	0	1	Masks
Klys Accel	151	11911	100093	1	0	1	Masks
Beam TBD2	152	11912	100101	0	0	1	Masks
RF Only	153	11913	100109	1	0	1	Masks
Beam TBD4	154	11914	100118	0	0	1	Masks
Straight Ahead Beam	155	11915	100126	1	0	3	Masks
Beam TBD6	157	11916	100135	0	0	1	Masks
Beam TBD7	158	11917	100143	0	0	1	Masks

IOC:IN20:EV01 EVG Diags Production EXIT OK **Pattern Pipeline** P-3 P-2 P-1 P0 (Now) PULSEID 0x2D0 0x2CF 0x2CE 0x2CD BEAMCD 9 18 0 0 TIMESLOT 1 6 5 4 MOD 1 0x8900 0x0 0x00x1200 MOD 2 0x6600001 0×20 0x10 0x6000008 0x0 MOD 3 0x1000000 0x00x00x80000000 MOD 4 0x20013FF0 0x80000000 0x80000000 MOD 5 0x1F00000 0x0 0x0 0×0 0 BUNCHG 0 0 Û AVGDONE 0xF7FDF 0xF7FDF 0xF7FDF 0xF7FDF **General Time Time Pipeline** 0x208189D4 Seconds 0x208189D4 0x208189D4 0x208189D4 0x291802CD Nsecs 0x299802D0 0x296C02CF 0x294202CF Status 0x0 0x00x00x0Counters MP00 PNET Bits MP01 PNET Bits All Counter Reset Time Slot Sync Error Counts: Total 102912323 Rollover of Total Time Slot 0 0 Invalid Waveform 0 **Time Slot Pattern** 0 Total (ISR) Writes 102912323 Time Slot/Pattern 0 Mismatch **Rollover of Writes** 0 Mod 720 Sync Error 0 ISB Overwrites 0 **Pulse ID Sync Error** 0 **ISR Lock Errors** 0 Pulse ID Rollover 786 360.0 Rate (Hz) Seg Ram Lock Errors Sequence RAM Busy 0 0 Seq Ram Invalid Data Seq RAM Mode Errors 24576 0 SW Fiducial (Test only) Sequence RAM Active 0 Off Std Dev Processina Average Maximum* * Since Reset 13.8 356.2 Time (us) 97.6 Maximum* Minimum*

2655.0

2899.9

Start Time Diff

Stanford Synchrotron Radiation Laboratory

Hardware Test Stand

Apr 25, 2007 EPICS Collaboration Meeting

Stanford Synchrotron Radiation Laboratory

Timing Jitter Test Results

EPICS Collaboration Meeting

saa@slac.stanford.edu

Stanford Synchrotron Radiation Laboratory

Event System HW: Long-Haul Dist.

For the next phase, the biggest challenge is Long-Haul distribution of timing data via the Fiber-Optical (F-O) Links

Why?

- MRF Event System is designed around Multi-Mode SFP (Small Form-Factor Pluggable) F-O links which allow a maximum fiber length of ~300 meters
- Our requirements include runs of several Kilometers (at least)
- Cannot daisy-chain the event F-O links: exceeds the jitter budget

Temperature effects on long fibers – drift, but how bad?

Stanford Synchrotron Radiation Laboratory

Event System HW: Long-Haul Dist.

- Proposed Solution: New HW and some testing
- Single-Mode, pin-compatible SFP modules are commercially available (Agilent ACFT-57R5)
 - All us to go ~10KM
 - Should plug right into our event system HW
- Still does not solve temperature-induced phase-drift problem
 - Propose to solve by either/and:
 - Running Long Fiber in temperature-controlled environment
 - Re-Syncing EVRs to a locally-distributed 119MHz source
- Long-haul fiber test:
 - Function of Single-Mode SFP Modules
 - Drift, Trigger time jitter, Phase Noise

Stanford Synchrotron Radiation Laboratory

Event System – Long-Haul Fiber System Test

Apr 25, 2007 EPICS Collaboration Meeting

Stanford Synchrotron Radiation Laboratory

Issues and Tasks

- Outstanding problem (presumably software) where CPU hangs when EVR interrupts are enabled. Some IOCs running without interrupts (hardware triggers but without timestamps, BSA, or event code IRQs).
- Outstanding bug with IRQ processing on VME EVRs
- Software not yet in place to handle hardware and communication errors.
- Changing an event code for a specific trigger requires a change in the delay to trigger at the same time need database to automate the change
- Need generic timing delay scan software that works for most device types
- Need to get status of RF clock into the system (external interface)
- Ability to change trigger attributes on a pulse-by-pulse basis using simple conditional expressions

Stanford Synchrotron Radiation Laboratory

Wish List
 When 2 event codes trigger a device on the same pulse, the second event restarts the delay. Wish the second event would be ignored instead.

Interrupt from the EVG on fiducial trigger (AC line trigger)

