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What is asynDriver?
■ “asynDriver is a general purpose facility for interfacing device 

specific code to low level drivers.”
■What does that mean?
► It is not a driver – it is a driver framework:

Interface definitions and a collection of utilities.
■What does it define?
► Interfaces to different classes (not brands) of hardware.

■What does it provide?
►Functionalities common to all (or many) drivers.
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The problem

■ Separate (incompatible) sets of drivers and device supports.
■Much effort duplicated but different sets of features.
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The plan

■ Every device supports works with every driver.
■Much work went to ASYN, less work to do for drivers.
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Provided functionalities
■ Dispatcher
►Thread for asynchronous I/O
► Interrupt subscription and handling
►Connection management
►Message concurrency
►Configuration (shell) functions

■ Debug tools
►Trace messages, trace files, trace levels
►General purpose (debug) hardware access

■ Set of simple device supports
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Interface definitions
■Old (bad): Device support talks to drivers.
►Different drivers for different hardware have different interfaces.
►Need special device support for each type of hardware.
►No support for other clients than device support.

■ New (good): Clients talk to abstract interfaces.
►Not limited to device supports.
●Shell (debug) functions
●Any C (and SNL) code

►Different device supports can talk to the same hardware.
►Need only one device support for any type of hardware.
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The cost
■ Device supports need to be modified
►Talk to asyn interfaces instead of driver

■ Driver needs to be modified
►Remove all “private” dispatcher code
►Use asyn library
► Implement interfaces for asyn
►Example: Simple digital voltmeter – Keithley 196
● ~130 lines removed
● 2 lines added
● 22 lines changed
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Benefits
■ New devices need to be implemented only once.
►All device supports can use all drivers.
►O(n+m) problem instead of O(n*m) problem.
►Different device supports can share same driver.

■ Porting to EPICS 3.14. need to be done only once.
■ “Standard” drivers already done.
►Local serial bus
►TCP and UDP sockets
►several GPIB drivers, including LAN/GPIB interfaces
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Current status

■ Several device supports converted.
■Many drivers converted.
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Driver architecture
Device support (or SNL code, 
another driver, or non-EPICS 

software)

Interfaces (named; 
pure virtual functions)

asynCommon
(connect, report, …)

asynOctet (write, 
read, setInputEos,…)

Port (named object) 

Port driver

device
addr=1addr=0

device
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Vocabulary: Port
■ Communication path (“bus”) with unique name.
■One or many devices can be connected.
■May have addresses to identify individual devices.
■May be blocking or non-blocking.
■ Is configured in startup script.

drvAsynSerialPortConfigure "COM2", "/dev/sttyS1"
drvAsynIPPortConfigure "fooServer", "192.168.0.10:40000"
vxi11Configure "LanGpib1", "192.168.0.1", 1, 1000, "hpib"

myDeviceDriverConfigure "portname", parameters
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Vocabulary: Interface
■ API for a class of ports.
►common, message based, register based, …

■ Defines table of driver functions (“methods”)
■ Does not implement driver methods.
■ Every port has one or many interfaces.
■ Clients talk to interfaces, not to drivers.

pasynCommon->connect()
pasynOctet->write()
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Vocabulary: Driver
■ Software to handle one type of ports.
■ Implements one or many interfaces.
►Provides method tables for interfaces.
►Has internal knowledge about specific port hardware.

■ Does not handle any specific device type!
■ Examples:
►serial bus, VXI-11, Green Springs IP488, …

■ Configure function in startup script connects driver to port.
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Vocabulary: asynUser
■ Identifies the client.
■ Each client needs one asynUser. 
■ From asynDriver’s point of view, asynUser is the client.
■ “Handle” to ports and everything else inside asynDriver.
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Vocabulary: asynManager
■ Core of asynDriver.
■ Creates threads for blocking ports.
■ Registers and finds ports and interfaces.
■ Schedules access to ports.
■ There is exactly one global instance: pasynManager
■ Clients ask asynManager for services

pasynManager->connectDevice(pasynUser , "portname", address)
pasynManager->findInterface(pasynUser, interfaceType, ...)
pasynManager->queueRequest(pasynUser, priority, timeout)

■ Drivers inform asynManager about any important things.
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physical communication
logical communicationAbstraction Layers

■ Client knows nothing about port and driver.

device

bus controller 
(port)

device

bus

driver

interface

client / asynUser
(e.g. device support)

addr 1 addr 2

Software Hardware
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Basic asynDriver interfaces
■ asynOctet
►Message based I/O: serial, GPIB, telnet-like TCP/IP, …

■ asynUInt32Digital
►Bit field registers: status word, switches, …

■ asynInt32, asynInt32Array
► Integer registers: ADC, DAC, encoder, …
► Integer arrays: spectrum analyzer, oscilloscope, …

■ asynFloat64, asynFloat64Array
►Floating point registers and arrays
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More interfaces
■ asynCommon
►Mandatory for every driver
►Methods: report, connect, disconnect

■ asyn*SyncIO
► Interfaces for clients which are willing to block
●Shell commands.
●SNL and C programs with separate threads. 

■ asynGpib
►Additional features which are not included in asynOctet:

SRQ polling, IFC, REN, addressed and universal commands, …
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Notes about register based interfaces
■ Hardware registers may be smaller/larger than Int32 / Float64
►Driver is responsible for conversion.
►Higher bits may be ignored / padded.
►Larger registers may be split or implemented as arrays.

■What does port and address mean here?
►Device and register number.

■What is an array register?
►Something that holds a waveform.
►May be implemented e.g. as many registers or as a fifo.
►Driver is responsible for conversion to/from array of Int32 / Float64.
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Control flow for blocking port
■ Client requests service 

and provides callback.
■ Port thread calls callback 

when client is scheduled.
■ Clients can call (even 

blocking) driver functions.
■ No other client of same 

port can interfere during 
callback.
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Control flow for non-blocking port
■ Client requests service 

and provides callback.
■ Callback is called 

immediately.
■ Clients can call (non-

blocking) driver functions.
■ No other client of same 

port can interfere during 
callback.
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Blocking and non-blocking ports
■ Ports with a field bus attached are usually blocking.
►Access to hardware may have arbitrary long delays.
►Client must be willing to block or must use callbacks.
●Scan tasks are not allowed to block.
●SNL, shell functions, or other code may block.

►Driver must have separate port thread to do actual I/O.
►Device support is asynchronous.

■ Ports which access local registers are usually non-blocking.
►Access to hardware has only very short delays.
►Device support is synchronous.
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Break

Coming soon: asynDriver clients (device support, etc.)
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Device example
■ RS232 and/or TCP/IP device.
■ Interface is asynOctet
►Local serial connection or telnet-style TCP/IP
►Good news: Drivers already exist.

■ Clients
►Command line functions.
►General purpose debug record: asynRecord
►Simple device supports for stringin, waveform, …
►Complicated device support with string parsing: StreamDevice
►Good news: All this already exists.
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asynOctet command line functions
■ Create / destroy handle

asynOctetConnet(handle, port, address=0,
timeout=1.0, buffersize=80)

asynOctetDisconnect(handle)

■ Talk to device
asynOctetWrite(handle, string)
asynOctetRead(handle)
asynOctetWriteRead(handle, string)
asynOctetFlush(handle)

■ Set / get terminators
asynOctetSetInputEos(port, address, eos)
asynOctetGetInputEos(port, address)
asynOctetSetOutputEos(port, address, eos)
asynOctetGetOutputEos(port, address)
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Example: asynOctet command line functions
drvAsynSerialPortConfigure "COM1", "/dev/ttyS0"
asynSetOption "COM1", -1, "baud", "9600"
asynSetOption "COM1", -1, "bits", "8"

asynSetOption "COM1", -1, "parity", "none"
asynSetOption "COM1", -1, "stop", "1"
asynOctetSetInputEos "COM1", 0, "\r\n"

asynOctetSetOutputEos "COM1", 0, "\r"
asynOctetConnet "Dirk","COM1"
asynOctetWriteRead "Dirk","value?"

asynOctetDisconnect "Dirk"
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More command line functions
■ Report

asynReport(level, port)

■ Driver and port options
asynSetOption(port, addr, key, value)

asynShowOption(port, addr, key)
asynAutoConnect(port, addr, yesNo)
asynEnable(port, addr, yesNo)

■ Tracing (debugging)
asynSetTraceFile(port, addr, filename)
asynSetTraceMask(port, addr, eventmask)
asynSetTraceIOMask(port, addr, formatmask)
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asynRecord
■ Special record type that can use all asyn interfaces.
■ Can connect to different ports at run-time.
■ Can change any setting of all interfaces  types.
■ Is a good debug tool.
■ Access to options including tracing.
■ Comes with set of medm screens for different interfaces.
■ Can only handle simple devices:
►e.g. asynOctet:  write one string, read one string

■ Is all you need (more than you want?) for simple devices.
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asynRecord medm screens
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Standard record asyn device supports
■ asynOctet support for stringin, and stringout, waveform
►Can do simple write/read of strings

■ Register support for ao, ai, bo, bi, mbboDirect, mbbiDirect, 
mbbo, mbbi, longout, longin, waveform
►Can do simple register write, register read.
► Interrupt can be used for “I/O Intr” scanning.

■ Can handle only simple devices
■ But for simple devices, that's all you need.
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Example: Records
■ Asyn record

record (asyn, "$(P):asyn") {
field (PORT, "TS")

}

■ String records
record (stringout, "$(P):command") {

field (FLNK, "$(P):reply")
}
record (stringin, "$(P):reply") {

field (DTYP, "asynOctetWriteRead")
field (INP,  "@asyn(TS,-1,1000) $(P):command")

}
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StreamDevice
■ Device support for standard records and asynOctet ports.
■ Suitable for medium complicated protocols and string parsing.
■ Communication protocol is specified in plain text file
►Big difference to devGpib: No need to recompile anything to support 

new device.
■ String formatting and parsing similar to printf/scanf, but with 

much more converters, e.g. bitfield, BCD, enum, raw, …
■ Checksum support.
■ StreamDevice is not part of the asynDriver package.

See: epics.web.psi.ch/software/streamdevice/
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Example: StreamDevice protocols
setValue { out "VALUE %.3f"; }
getValue { out "VALUE?"; in "VALUE=%f"; }
getStatus { out "STAT?"; in "STAT=%B.!"; } # bits: .=0 !=1

setSwitch { out "SWITCH %{OFF|ON}"; # enumeration
@init {out "SWITCH?"; in "SWITCH=%{OFF|ON}"; } # init record

}

getDataWithEcho {out "DATA?"; in "DATA?"; in "%d"; }
writeCalcoutFieldsWithChecksum {

out "A=%(A)g B=%(B)g C=%(C)g D=%(D)g %0<CRC32>";

}
read2Values { out "get"; in "%f %(OtherRecord.VAL)f"; }
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Exercise (before break)
■ TCP device on port 40000
►First connect with telnet: telnet localhost 40000

■ Serial device on local port (/dev/ttyS0 or /dev/ttyUSB0)
►First connect with minicom: xterm –e minicom &

■ Find out what the device does
►Try command HELP.

■ Try asynRecord and asyn device support.
►Softioc is in directory ioc
►medm for asynRecord displays is installed

■ Try StreamDevice support.
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Break

Coming soon: writing your own device support
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Writing your own device support
■ If your device is too complicated, you have to – and you can 

write your own device support.
■ It works smoothly together with other supports, even when 

talking to the same device!
►You can write your own support for the complicated stuff only and 

leave the simple functions to existing supports.
■ Also SNL or C-code can directly access the device without 

disturbing any records using the same port or even the same 
device.
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Step 1: Connect to the port
■ Before doing anything you must become an asynUser

pasynUser=pasynManager->createAsynUser(processCallback, 
timeoutCallback);

►Provide 1 or 2 callbacks, first is called when you are scheduled to 
access the port, second is called on timeout.

■ Connect to the device (port, address)
status=pasynManager->connectDevice(pasynUser, port, addr);

■Get the interface you need (e.g. asynOctet)
pasynInterface=pasynManager->findInterface(pasynUser, 

asynOctetType, 1);
pasynOctet=(asynOctet *)pasynInterface->pinterface;
pvtOctet=pasynInterface->drvPvt;
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Step 2: Request access to the port
■ Ask asynManager to put yur request to the queue

status=pasynManager->queueRequest(pasynUser, priority, 
timeout);

►Priorities: asynQueuePriority{Low|Medium|High}
►queueRequest never blocks.
►Blocking port: AsynManager will call your processCallback

when port is free. The callback runs in port thread.
►Non blocking port: queueRequest calls processCallback.
► If port is not free for timeout seconds, asynManager calls 
timeoutCallback. This callback runs in timer thread.

► In processCallback, you have exclusive access to the port.
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Step 3: processCallback (asynOctet)
■ Flush (discard old input)

status=pasynOctet->flush(pvtOctet, pasynUser);

■Write (with/without output eos appended)
status=pasynOctet->write[Raw](pvtOctet, pasynUser, data, 

size, &bytesWritten);

►Actual number of written bytes is returned in bytesWritten.
■ Read (with/without input eos handling)

status=pasynOctet->read[Raw](pvtOctet, pasynUser, buffer, 
maxsize, &bytesReceived, &eomReason);

►Actual number of written bytes is returned in bytesReceived.
►End of message reason is returned in eomReason.
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Step 3: processCallback (asynInt32)
■Get bounds

status=pasynInt32->getBounds(pvtInt32, pasynUser, &low, 
&high);

►Limits for valid register values are returned in low and high.
■Write

status=pasynInt32->write(pvtInt32, pasynUser, value);

■ Read
status=pasynInt32->read(pvtInt32, pasynUser, &value);

►Current register value is returned in value.
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Step 3: processCallback (asynUInt32Digital)
■Write

status=pasynUInt32Digital->write(pvtUInt32Digital, 
pasynUser, value, mask);

►Only bits specified by mask are modified.
■ Read

status=pasynUInt32Digital->read(pvtUInt32Digital,  
pasynUser, &value, mask);

►Current register value & mask is returned in value.
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Rules for using driver methods
■ Never use I/O methods outside processCallback.
■Only talk to the port that has called you back.
■ You can do as many I/O as you like.
■ You always must use the interface method table 
pasyn{Octet|Int32|…} to access the driver.

■ You always need pvt… and pasynUser as arguments.
■ All other clients of the same port (even with other addresses) 

have to wait until you are finished. This is not nice of you if your 
device blocks for a long time!
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Allow access to other devices on same port
■ Between your I/O calls, other clients can talk to other devices of 

the same port, if you let them.
■ Lock your device.

status=pasynManager->blockProcessCallback(pasynUser, 0);

■ Call only one I/O method at a time in processCallback.
■ Commit new queueRequest() and finish callback.
■When done, release your device.

status=pasynManager->unblockProcessCallback(pasynUser, 0);

■ This only applies to blocking devices with multiple addresses.
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Informational asynManager methods
■Write report to file

pasynManager->report(file, detailLevel, port);

►Can be called without asynUser in any context.
■Get information about port.

status=pasynManager->isMultiDevice(pasynUser, port, &yesNo);

►Can be called before connected to port.
■Get information about connected port.

status=pasynManager->canBlock(pasynUser, &yesNo);
status=pasynManager->isEnabled(pasynUser, &yesNo);
status=pasynManager->isConnected(pasynUser, &yesNo);

status=pasynManager->isAutoConnect(pasynUser, &yesNo);
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More asynManager methods
■ Cleanup

status=pasynManager->disconnect(pasynUser);

►Disconnects asynUser from port.
►Fails when asynUser is queued or callback is active.
status=pasynManager->freeAsynUser(pasynUser);

►freeAsynUser automatically calls disconnect.
■ Cancel queued request

status=pasynManager->cancelRequest(pasynUser);

►Blocks when callback is active.
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Interrupts
■ Register for asynInt32 interrupts

void interruptCallbackInt32(userPvt, pasynUser, value);
status=pasynInt32->registerInterruptUser(pvtInt32, 

pasynUser, interruptCallbackInt32, userPvt, 
&intrruptPvtInt32);

status=pasynInt32->cancelInterruptUser(pvtInt32, pasynUser, 
intrruptPvtInt32);

■ Similar for other interfaces
void interruptCallbackOctet(userPvt, pasynUser, data, size, 

eomReason);

■ Callbacks do not run in interrupt context!
■ Interface has changed in asynDriver version 5.0.
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Remarks on device supports
■ Always check return value of methods

typedef enum {asynSuccess, asynTimeout, asynOverflow, 
asynError} asynStatus;

■ If port can block you must implement asynchronous support.
►Set precord->pact=1 before queueRequest.
►Return after queueRequest and wait for callback.
► In your callback call callbackRequestProcessCallback.
►Update record in second processing run.

■ If port cannot block you can implement synchronous support.
►Update record after queueRequest and return.
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Writing blocking clients
■ Clients which run in a private thread may use synchonous (i.e. 

blocking) interfaces.
■ Examples: Shell functions, SNL code, custom C code.
■ No need to use callbacks.
■ No need to know about asynManager.
■ Never use this from scan threads, i.e. in device supports!
■ There is one global interface instance for each synchronous 

interface type.
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asynOctetSyncIO
■ Create asynUser and connect to port

status=pasynOctetSyncIO->connect(port, addr, &pasynUser, 
driverInfo);

■ Blocking I/O methods
status=pasynOctetSyncIO->write[Raw](pasynUser, data, size, 

timeout, &bytesTransfered);

status=pasynOctetSyncIO->read[Raw](pasynUser, buffer, 
maxsize, timeout, &bytesReceived, &eomReason);

status=pasynOctetSyncIO->flush(pasynUser);

■ Disconnect from port and free asynUser
status=pasynOctetSyncIO->disconnect(pasynUser);
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asynOctetSyncIO convenience methods
■ Connect, write, disconnect

status=pasynOctetSyncIO->write[Raw]Once(port, addr, data, 
size, timeout, &bytesTransfered, driverInfo);

■ Connect, read, disconnect
status=pasynOctetSyncIO->read[Raw]Once(port, addr, buffer, 

maxsize, timeout, &bytesReceived, &eomReason, 
driverInfo);

■ Connect, write, read, disconnect
status=pasynOctetSyncIO->writeReadOnce(port, addr, data, 

size, buffer, maxsize, timeout, &bytesTransfered,  
&bytesReceived, &eomReason, driverInfo);
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Other syncIO interfaces work similar
■ Create asynUser and connect to port.
■ Blocking I/O methods analogous to asynchonous interface.
■ Disconnect and destroy asynUser.
■ Convenience methods: Connect, I/O, disconnect.

■ For more details see interface description in asynDriver
documentation:
►www.aps.anl.gov/epics/modules/soft/asyn/R4-7/asynDriver.html
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Break

Coming soon: low-level asynDrivers
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Writing asyn drivers
■ First look if your port hardware is already supported.
■ Remember: This is about ports not devices!
►A local bus controller card is a port, e.g. CANbus card, GPIB card
►A network device is a port, e.g. telnet-style TCP, VXI-11
►An oscilloscope connected via GPIB is not a port!
►What about VME-bus I/O cards? ADCs, Encoders, …
●You can write a port driver for that card, but…
●Better spend the effort to write a general purpose VME-register driver.
●Put the intelligence into device support, not port driver.
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Which interfaces should be implemented?
■ asynCommon: a must

report(), connect(), disconnect()

■ asynOctet: if port provides multi-byte messages (text)
write(), read(), writeRaw(), readRaw(), flush(), setInputEos(),  

getinputEos(), setOutputEos(), getOutputEos(), 
registerInterruptUser(), cancelInterruptUser()

■ asynGpib (in addition to asynOctet): if port is GPIB
addressesCmd(), universalCmd(), ifc(), ren(), … 

■ Register interfaces: if port provides "active variables"
write(), read(), registerInterruptUser(), cancelInterruptUser(), 

getBounds(), setInterrupt(), clearInterrupt()
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Should I define my own interface type?
■ No.
■ Yes, if your port needs special methods
►You have do define your own port type with a set of methods.
►Keep it as generic as possible, not a class with only one member!
► Is it really not possible to use a combination of standard interfaces?
► Is asynMotor a candidate?
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Step 1: Define private data structure
■ Structure must contain everything you need to operate a port.
■ Each port instance has its own structure.
►There may be more than one instance at a time.
►Avoid global variables. Put everything into your structure.
►User will see this structure as drvPvt.
►All your methods get drvPvt as first argument. Cast it back to a 

pointer to your private structure.
■ For each interface, put in one asynInterface structure.
■ Put in method tables.
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Step 2: Write driver methods
■ Implement all methods for all interfaces you want to support.
►Most interfaces have a "base class" which already provides default 

implementations for some methods.
►Your methods can be (should be) static. Nobody will ever access them 

execpt via the interface function table.
■Write a useful report() method.
►Users want to know: name of your driver, addresses, connection 

status, interrupts, any internals that may help to identify problems!
►Use the detail argument to filter the amount of information. Report 

just driver name and summary for level 0.
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Step 2: Write driver methods (cont'd) 
■Write connect() method
►Open conenction to actual device, get handle from 3rd party software 

or similar.
►For multi-devices, call pasynManager->getAddr().
►Return asynError if device is already connected.
►Setup connection and/or device.
►Call pasynManager->exceptionConnect().
►Every device (port/address) is connected only once at a time, even 

when many asynUsers use it. The provided asynUser is the first one 
that uses this device.
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Step 2: Write driver methods (cont'd) 
■Write disconnect() method
►Close conenction to actual device, free handle from 3rd party software 

or similar.
►For multi-devices, call pasynManager->getAddr().
►Return asynError if device is not connected.
►Cleanup device and/or connection.
►Call pasynManager->exceptionDisconnect().
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Step 3: Write configuration function
■ This function is called in the startup script to set up the port.
■Give it a useful and specific name
►Not just portInit or configure.
►Examples: drvAsynSerialPortConfigure, 
drvAsynIPPortConfigure, vxi11Configure

■ Export it to iocsh.
■ First argument should be port name.
■Give useful default values to as many arguments as possible.
■ Check all arguments! People write stupid stuff in startup scripts.
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Configuration function: Fill private structure
■ Allocate and fill private structure with everything you need to 

operate the port. 
►Mutexes, timers, other resources.

■ Fill asynInterface structures in your private structure.
►Fill interfaceType: what type of interface is it?
►Fill pinterface: pointer to your method table.
►Fill drvPvt: pointer to your private structure.

■ Fill method tables with pointers to your methods.
►Base interfaces provide initialize() method to fill method 

table with default implementations.
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Configuration function: Register to asynManager
■ Call pasynManager->registerPort().
►This tells asynManager if port has multiple addresses, if port can block 

and if autoConnect is enabled.
■ For each supported interface call 
pasynManager->registerInterface().

■ For each interface that generates interrupts call 
pasynManager->registerInterruptSource().
► Interrupt may actually be implemented as poll thread or any type of 

event handler.
► It means just: new data has arrived asynchronously
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Step 4: Write interrupt handler (optional)
■ Details strongly depends on implementation
►Connect handler to hardware interrupt.
►Create thread that polls hardware periodically.
►Register to event system of 3rd party software.

■ Call pasynManager->interruptStart().
►You get a list of clients which have subscribed for this interrupt.

■ For each client, call interrupt callback and provide value.
■ Call pasynManager->interruptEnd().
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Advanced concepts
■ Exceptions
►Users can subscribe for special events, e.g. connect/disconnect.

■ Interpose interfaces
►Additional transparent layers can be put between port and user.
►These layers can pre/post process data.
►asynOctet terminators (eos) are implemented this way.

■ asynOption: Port options (key, value pairs)
►Example: baud rate, parity, etc for serial port.

■ asynDrvUser: Named driver resources
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Examples of port drivers in asyn package
■ asynOctet / asynGpib drivers
►asyn/drvAsynSerial/
►asyn/vxi11/
►asyn/ni1014/
►asyn/gsIP488/
►asyn/linuxGpib/

■ register driver examples
► testEpicsApp/src/
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More information
■ AsynDriver

► www.aps.anl.gov/epics/modules/soft/asyn/
■ StreamDevice

► epics.web.psi.ch/software/streamdevice/
■ linuxGpib

► linux-gpib.sourceforge.net/
■ Drivers/device supports using asynDriver

► www.aps.anl.gov/aod/bcda/synApps/
■ Talks about asynDriver

► www.aps.anl.gov/aod/bcda/epicsgettingstarted/iocs/ASYN.html
► www.aps.anl.gov/epics/docs/USPAS2007.php


