
Dirk Zimoch, 2007

Introduction to asynDriver

Page 2 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

What is asynDriver?
■ “asynDriver is a general purpose facility for interfacing device

specific code to low level drivers.”
■What does that mean?
► It is not a driver – it is a driver framework:

Interface definitions and a collection of utilities.
■What does it define?
► Interfaces to different classes (not brands) of hardware.

■What does it provide?
►Functionalities common to all (or many) drivers.

Page 3 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

The problem

■ Separate (incompatible) sets of drivers and device supports.
■Much effort duplicated but different sets of features.

Page 4 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

The plan

■ Every device supports works with every driver.
■Much work went to ASYN, less work to do for drivers.

Page 5 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Provided functionalities
■ Dispatcher
►Thread for asynchronous I/O
► Interrupt subscription and handling
►Connection management
►Message concurrency
►Configuration (shell) functions

■ Debug tools
►Trace messages, trace files, trace levels
►General purpose (debug) hardware access

■ Set of simple device supports

Page 6 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Interface definitions
■Old (bad): Device support talks to drivers.
►Different drivers for different hardware have different interfaces.
►Need special device support for each type of hardware.
►No support for other clients than device support.

■ New (good): Clients talk to abstract interfaces.
►Not limited to device supports.
●Shell (debug) functions
●Any C (and SNL) code

►Different device supports can talk to the same hardware.
►Need only one device support for any type of hardware.

Page 7 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

The cost
■ Device supports need to be modified
►Talk to asyn interfaces instead of driver

■ Driver needs to be modified
►Remove all “private” dispatcher code
►Use asyn library
► Implement interfaces for asyn
►Example: Simple digital voltmeter – Keithley 196
● ~130 lines removed
● 2 lines added
● 22 lines changed

Page 8 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Benefits
■ New devices need to be implemented only once.
►All device supports can use all drivers.
►O(n+m) problem instead of O(n*m) problem.
►Different device supports can share same driver.

■ Porting to EPICS 3.14. need to be done only once.
■ “Standard” drivers already done.
►Local serial bus
►TCP and UDP sockets
►several GPIB drivers, including LAN/GPIB interfaces

Page 9 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Current status

■ Several device supports converted.
■Many drivers converted.

Page 10 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Driver architecture
Device support (or SNL code,
another driver, or non-EPICS

software)

Interfaces (named;
pure virtual functions)

asynCommon
(connect, report, …)

asynOctet (write,
read, setInputEos,…)

Port (named object)

Port driver

device
addr=1addr=0

device

Page 11 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Vocabulary: Port
■ Communication path (“bus”) with unique name.
■One or many devices can be connected.
■May have addresses to identify individual devices.
■May be blocking or non-blocking.
■ Is configured in startup script.

drvAsynSerialPortConfigure "COM2", "/dev/sttyS1"
drvAsynIPPortConfigure "fooServer", "192.168.0.10:40000"
vxi11Configure "LanGpib1", "192.168.0.1", 1, 1000, "hpib"

myDeviceDriverConfigure "portname", parameters

Page 12 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Vocabulary: Interface
■ API for a class of ports.
►common, message based, register based, …

■ Defines table of driver functions (“methods”)
■ Does not implement driver methods.
■ Every port has one or many interfaces.
■ Clients talk to interfaces, not to drivers.

pasynCommon->connect()
pasynOctet->write()

Page 13 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Vocabulary: Driver
■ Software to handle one type of ports.
■ Implements one or many interfaces.
►Provides method tables for interfaces.
►Has internal knowledge about specific port hardware.

■ Does not handle any specific device type!
■ Examples:
►serial bus, VXI-11, Green Springs IP488, …

■ Configure function in startup script connects driver to port.

Page 14 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Vocabulary: asynUser
■ Identifies the client.
■ Each client needs one asynUser.
■ From asynDriver’s point of view, asynUser is the client.
■ “Handle” to ports and everything else inside asynDriver.

Page 15 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Vocabulary: asynManager
■ Core of asynDriver.
■ Creates threads for blocking ports.
■ Registers and finds ports and interfaces.
■ Schedules access to ports.
■ There is exactly one global instance: pasynManager
■ Clients ask asynManager for services

pasynManager->connectDevice(pasynUser , "portname", address)
pasynManager->findInterface(pasynUser, interfaceType, ...)
pasynManager->queueRequest(pasynUser, priority, timeout)

■ Drivers inform asynManager about any important things.

Page 16 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver
physical communication
logical communicationAbstraction Layers

■ Client knows nothing about port and driver.

device

bus controller
(port)

device

bus

driver

interface

client / asynUser
(e.g. device support)

addr 1 addr 2

Software Hardware

Page 17 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Basic asynDriver interfaces
■ asynOctet
►Message based I/O: serial, GPIB, telnet-like TCP/IP, …

■ asynUInt32Digital
►Bit field registers: status word, switches, …

■ asynInt32, asynInt32Array
► Integer registers: ADC, DAC, encoder, …
► Integer arrays: spectrum analyzer, oscilloscope, …

■ asynFloat64, asynFloat64Array
►Floating point registers and arrays

Page 18 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

More interfaces
■ asynCommon
►Mandatory for every driver
►Methods: report, connect, disconnect

■ asyn*SyncIO
► Interfaces for clients which are willing to block
●Shell commands.
●SNL and C programs with separate threads.

■ asynGpib
►Additional features which are not included in asynOctet:

SRQ polling, IFC, REN, addressed and universal commands, …

Page 19 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Notes about register based interfaces
■ Hardware registers may be smaller/larger than Int32 / Float64
►Driver is responsible for conversion.
►Higher bits may be ignored / padded.
►Larger registers may be split or implemented as arrays.

■What does port and address mean here?
►Device and register number.

■What is an array register?
►Something that holds a waveform.
►May be implemented e.g. as many registers or as a fifo.
►Driver is responsible for conversion to/from array of Int32 / Float64.

Page 20 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Control flow for blocking port
■ Client requests service

and provides callback.
■ Port thread calls callback

when client is scheduled.
■ Clients can call (even

blocking) driver functions.
■ No other client of same

port can interfere during
callback.

Page 21 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Control flow for non-blocking port
■ Client requests service

and provides callback.
■ Callback is called

immediately.
■ Clients can call (non-

blocking) driver functions.
■ No other client of same

port can interfere during
callback.

Page 22 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Blocking and non-blocking ports
■ Ports with a field bus attached are usually blocking.
►Access to hardware may have arbitrary long delays.
►Client must be willing to block or must use callbacks.
●Scan tasks are not allowed to block.
●SNL, shell functions, or other code may block.

►Driver must have separate port thread to do actual I/O.
►Device support is asynchronous.

■ Ports which access local registers are usually non-blocking.
►Access to hardware has only very short delays.
►Device support is synchronous.

Dirk Zimoch, 2007

Break

Coming soon: asynDriver clients (device support, etc.)

Page 24 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Device example
■ RS232 and/or TCP/IP device.
■ Interface is asynOctet
►Local serial connection or telnet-style TCP/IP
►Good news: Drivers already exist.

■ Clients
►Command line functions.
►General purpose debug record: asynRecord
►Simple device supports for stringin, waveform, …
►Complicated device support with string parsing: StreamDevice
►Good news: All this already exists.

Page 25 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

asynOctet command line functions
■ Create / destroy handle

asynOctetConnet(handle, port, address=0,
timeout=1.0, buffersize=80)

asynOctetDisconnect(handle)

■ Talk to device
asynOctetWrite(handle, string)
asynOctetRead(handle)
asynOctetWriteRead(handle, string)
asynOctetFlush(handle)

■ Set / get terminators
asynOctetSetInputEos(port, address, eos)
asynOctetGetInputEos(port, address)
asynOctetSetOutputEos(port, address, eos)
asynOctetGetOutputEos(port, address)

Page 26 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Example: asynOctet command line functions
drvAsynSerialPortConfigure "COM1", "/dev/ttyS0"
asynSetOption "COM1", -1, "baud", "9600"
asynSetOption "COM1", -1, "bits", "8"

asynSetOption "COM1", -1, "parity", "none"
asynSetOption "COM1", -1, "stop", "1"
asynOctetSetInputEos "COM1", 0, "\r\n"

asynOctetSetOutputEos "COM1", 0, "\r"
asynOctetConnet "Dirk","COM1"
asynOctetWriteRead "Dirk","value?"

asynOctetDisconnect "Dirk"

Page 27 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

More command line functions
■ Report

asynReport(level, port)

■ Driver and port options
asynSetOption(port, addr, key, value)

asynShowOption(port, addr, key)
asynAutoConnect(port, addr, yesNo)
asynEnable(port, addr, yesNo)

■ Tracing (debugging)
asynSetTraceFile(port, addr, filename)
asynSetTraceMask(port, addr, eventmask)
asynSetTraceIOMask(port, addr, formatmask)

Page 28 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

asynRecord
■ Special record type that can use all asyn interfaces.
■ Can connect to different ports at run-time.
■ Can change any setting of all interfaces types.
■ Is a good debug tool.
■ Access to options including tracing.
■ Comes with set of medm screens for different interfaces.
■ Can only handle simple devices:
►e.g. asynOctet: write one string, read one string

■ Is all you need (more than you want?) for simple devices.

Page 29 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

asynRecord medm screens

Page 30 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Standard record asyn device supports
■ asynOctet support for stringin, and stringout, waveform
►Can do simple write/read of strings

■ Register support for ao, ai, bo, bi, mbboDirect, mbbiDirect,
mbbo, mbbi, longout, longin, waveform
►Can do simple register write, register read.
► Interrupt can be used for “I/O Intr” scanning.

■ Can handle only simple devices
■ But for simple devices, that's all you need.

Page 31 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Example: Records
■ Asyn record

record (asyn, "$(P):asyn") {
field (PORT, "TS")

}

■ String records
record (stringout, "$(P):command") {

field (FLNK, "$(P):reply")
}
record (stringin, "$(P):reply") {

field (DTYP, "asynOctetWriteRead")
field (INP, "@asyn(TS,-1,1000) $(P):command")

}

Page 32 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

StreamDevice
■ Device support for standard records and asynOctet ports.
■ Suitable for medium complicated protocols and string parsing.
■ Communication protocol is specified in plain text file
►Big difference to devGpib: No need to recompile anything to support

new device.
■ String formatting and parsing similar to printf/scanf, but with

much more converters, e.g. bitfield, BCD, enum, raw, …
■ Checksum support.
■ StreamDevice is not part of the asynDriver package.

See: epics.web.psi.ch/software/streamdevice/

Page 33 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Example: StreamDevice protocols
setValue { out "VALUE %.3f"; }
getValue { out "VALUE?"; in "VALUE=%f"; }
getStatus { out "STAT?"; in "STAT=%B.!"; } # bits: .=0 !=1

setSwitch { out "SWITCH %{OFF|ON}"; # enumeration
@init {out "SWITCH?"; in "SWITCH=%{OFF|ON}"; } # init record

}

getDataWithEcho {out "DATA?"; in "DATA?"; in "%d"; }
writeCalcoutFieldsWithChecksum {

out "A=%(A)g B=%(B)g C=%(C)g D=%(D)g %0<CRC32>";

}
read2Values { out "get"; in "%f %(OtherRecord.VAL)f"; }

Page 34 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Exercise (before break)
■ TCP device on port 40000
►First connect with telnet: telnet localhost 40000

■ Serial device on local port (/dev/ttyS0 or /dev/ttyUSB0)
►First connect with minicom: xterm –e minicom &

■ Find out what the device does
►Try command HELP.

■ Try asynRecord and asyn device support.
►Softioc is in directory ioc
►medm for asynRecord displays is installed

■ Try StreamDevice support.

Dirk Zimoch, 2007

Break

Coming soon: writing your own device support

Page 36 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Writing your own device support
■ If your device is too complicated, you have to – and you can

write your own device support.
■ It works smoothly together with other supports, even when

talking to the same device!
►You can write your own support for the complicated stuff only and

leave the simple functions to existing supports.
■ Also SNL or C-code can directly access the device without

disturbing any records using the same port or even the same
device.

Page 37 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Step 1: Connect to the port
■ Before doing anything you must become an asynUser

pasynUser=pasynManager->createAsynUser(processCallback,
timeoutCallback);

►Provide 1 or 2 callbacks, first is called when you are scheduled to
access the port, second is called on timeout.

■ Connect to the device (port, address)
status=pasynManager->connectDevice(pasynUser, port, addr);

■Get the interface you need (e.g. asynOctet)
pasynInterface=pasynManager->findInterface(pasynUser,

asynOctetType, 1);
pasynOctet=(asynOctet *)pasynInterface->pinterface;
pvtOctet=pasynInterface->drvPvt;

Page 38 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Step 2: Request access to the port
■ Ask asynManager to put yur request to the queue

status=pasynManager->queueRequest(pasynUser, priority,
timeout);

►Priorities: asynQueuePriority{Low|Medium|High}
►queueRequest never blocks.
►Blocking port: AsynManager will call your processCallback

when port is free. The callback runs in port thread.
►Non blocking port: queueRequest calls processCallback.
► If port is not free for timeout seconds, asynManager calls
timeoutCallback. This callback runs in timer thread.

► In processCallback, you have exclusive access to the port.

Page 39 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Step 3: processCallback (asynOctet)
■ Flush (discard old input)

status=pasynOctet->flush(pvtOctet, pasynUser);

■Write (with/without output eos appended)
status=pasynOctet->write[Raw](pvtOctet, pasynUser, data,

size, &bytesWritten);

►Actual number of written bytes is returned in bytesWritten.
■ Read (with/without input eos handling)

status=pasynOctet->read[Raw](pvtOctet, pasynUser, buffer,
maxsize, &bytesReceived, &eomReason);

►Actual number of written bytes is returned in bytesReceived.
►End of message reason is returned in eomReason.

Page 40 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Step 3: processCallback (asynInt32)
■Get bounds

status=pasynInt32->getBounds(pvtInt32, pasynUser, &low,
&high);

►Limits for valid register values are returned in low and high.
■Write

status=pasynInt32->write(pvtInt32, pasynUser, value);

■ Read
status=pasynInt32->read(pvtInt32, pasynUser, &value);

►Current register value is returned in value.

Page 41 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Step 3: processCallback (asynUInt32Digital)
■Write

status=pasynUInt32Digital->write(pvtUInt32Digital,
pasynUser, value, mask);

►Only bits specified by mask are modified.
■ Read

status=pasynUInt32Digital->read(pvtUInt32Digital,
pasynUser, &value, mask);

►Current register value & mask is returned in value.

Page 42 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Rules for using driver methods
■ Never use I/O methods outside processCallback.
■Only talk to the port that has called you back.
■ You can do as many I/O as you like.
■ You always must use the interface method table
pasyn{Octet|Int32|…} to access the driver.

■ You always need pvt… and pasynUser as arguments.
■ All other clients of the same port (even with other addresses)

have to wait until you are finished. This is not nice of you if your
device blocks for a long time!

Page 43 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Allow access to other devices on same port
■ Between your I/O calls, other clients can talk to other devices of

the same port, if you let them.
■ Lock your device.

status=pasynManager->blockProcessCallback(pasynUser, 0);

■ Call only one I/O method at a time in processCallback.
■ Commit new queueRequest() and finish callback.
■When done, release your device.

status=pasynManager->unblockProcessCallback(pasynUser, 0);

■ This only applies to blocking devices with multiple addresses.

Page 44 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Informational asynManager methods
■Write report to file

pasynManager->report(file, detailLevel, port);

►Can be called without asynUser in any context.
■Get information about port.

status=pasynManager->isMultiDevice(pasynUser, port, &yesNo);

►Can be called before connected to port.
■Get information about connected port.

status=pasynManager->canBlock(pasynUser, &yesNo);
status=pasynManager->isEnabled(pasynUser, &yesNo);
status=pasynManager->isConnected(pasynUser, &yesNo);

status=pasynManager->isAutoConnect(pasynUser, &yesNo);

Page 45 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

More asynManager methods
■ Cleanup

status=pasynManager->disconnect(pasynUser);

►Disconnects asynUser from port.
►Fails when asynUser is queued or callback is active.
status=pasynManager->freeAsynUser(pasynUser);

►freeAsynUser automatically calls disconnect.
■ Cancel queued request

status=pasynManager->cancelRequest(pasynUser);

►Blocks when callback is active.

Page 46 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Interrupts
■ Register for asynInt32 interrupts

void interruptCallbackInt32(userPvt, pasynUser, value);
status=pasynInt32->registerInterruptUser(pvtInt32,

pasynUser, interruptCallbackInt32, userPvt,
&intrruptPvtInt32);

status=pasynInt32->cancelInterruptUser(pvtInt32, pasynUser,
intrruptPvtInt32);

■ Similar for other interfaces
void interruptCallbackOctet(userPvt, pasynUser, data, size,

eomReason);

■ Callbacks do not run in interrupt context!
■ Interface has changed in asynDriver version 5.0.

Page 47 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Remarks on device supports
■ Always check return value of methods

typedef enum {asynSuccess, asynTimeout, asynOverflow,
asynError} asynStatus;

■ If port can block you must implement asynchronous support.
►Set precord->pact=1 before queueRequest.
►Return after queueRequest and wait for callback.
► In your callback call callbackRequestProcessCallback.
►Update record in second processing run.

■ If port cannot block you can implement synchronous support.
►Update record after queueRequest and return.

Page 48 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Writing blocking clients
■ Clients which run in a private thread may use synchonous (i.e.

blocking) interfaces.
■ Examples: Shell functions, SNL code, custom C code.
■ No need to use callbacks.
■ No need to know about asynManager.
■ Never use this from scan threads, i.e. in device supports!
■ There is one global interface instance for each synchronous

interface type.

Page 49 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

asynOctetSyncIO
■ Create asynUser and connect to port

status=pasynOctetSyncIO->connect(port, addr, &pasynUser,
driverInfo);

■ Blocking I/O methods
status=pasynOctetSyncIO->write[Raw](pasynUser, data, size,

timeout, &bytesTransfered);

status=pasynOctetSyncIO->read[Raw](pasynUser, buffer,
maxsize, timeout, &bytesReceived, &eomReason);

status=pasynOctetSyncIO->flush(pasynUser);

■ Disconnect from port and free asynUser
status=pasynOctetSyncIO->disconnect(pasynUser);

Page 50 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

asynOctetSyncIO convenience methods
■ Connect, write, disconnect

status=pasynOctetSyncIO->write[Raw]Once(port, addr, data,
size, timeout, &bytesTransfered, driverInfo);

■ Connect, read, disconnect
status=pasynOctetSyncIO->read[Raw]Once(port, addr, buffer,

maxsize, timeout, &bytesReceived, &eomReason,
driverInfo);

■ Connect, write, read, disconnect
status=pasynOctetSyncIO->writeReadOnce(port, addr, data,

size, buffer, maxsize, timeout, &bytesTransfered,
&bytesReceived, &eomReason, driverInfo);

Page 51 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Other syncIO interfaces work similar
■ Create asynUser and connect to port.
■ Blocking I/O methods analogous to asynchonous interface.
■ Disconnect and destroy asynUser.
■ Convenience methods: Connect, I/O, disconnect.

■ For more details see interface description in asynDriver
documentation:
►www.aps.anl.gov/epics/modules/soft/asyn/R4-7/asynDriver.html

Dirk Zimoch, 2007

Break

Coming soon: low-level asynDrivers

Page 53 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Writing asyn drivers
■ First look if your port hardware is already supported.
■ Remember: This is about ports not devices!
►A local bus controller card is a port, e.g. CANbus card, GPIB card
►A network device is a port, e.g. telnet-style TCP, VXI-11
►An oscilloscope connected via GPIB is not a port!
►What about VME-bus I/O cards? ADCs, Encoders, …
●You can write a port driver for that card, but…
●Better spend the effort to write a general purpose VME-register driver.
●Put the intelligence into device support, not port driver.

Page 54 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Which interfaces should be implemented?
■ asynCommon: a must

report(), connect(), disconnect()

■ asynOctet: if port provides multi-byte messages (text)
write(), read(), writeRaw(), readRaw(), flush(), setInputEos(),

getinputEos(), setOutputEos(), getOutputEos(),
registerInterruptUser(), cancelInterruptUser()

■ asynGpib (in addition to asynOctet): if port is GPIB
addressesCmd(), universalCmd(), ifc(), ren(), …

■ Register interfaces: if port provides "active variables"
write(), read(), registerInterruptUser(), cancelInterruptUser(),

getBounds(), setInterrupt(), clearInterrupt()

Page 55 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Should I define my own interface type?
■ No.
■ Yes, if your port needs special methods
►You have do define your own port type with a set of methods.
►Keep it as generic as possible, not a class with only one member!
► Is it really not possible to use a combination of standard interfaces?
► Is asynMotor a candidate?

Page 56 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Step 1: Define private data structure
■ Structure must contain everything you need to operate a port.
■ Each port instance has its own structure.
►There may be more than one instance at a time.
►Avoid global variables. Put everything into your structure.
►User will see this structure as drvPvt.
►All your methods get drvPvt as first argument. Cast it back to a

pointer to your private structure.
■ For each interface, put in one asynInterface structure.
■ Put in method tables.

Page 57 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Step 2: Write driver methods
■ Implement all methods for all interfaces you want to support.
►Most interfaces have a "base class" which already provides default

implementations for some methods.
►Your methods can be (should be) static. Nobody will ever access them

execpt via the interface function table.
■Write a useful report() method.
►Users want to know: name of your driver, addresses, connection

status, interrupts, any internals that may help to identify problems!
►Use the detail argument to filter the amount of information. Report

just driver name and summary for level 0.

Page 58 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Step 2: Write driver methods (cont'd)
■Write connect() method
►Open conenction to actual device, get handle from 3rd party software

or similar.
►For multi-devices, call pasynManager->getAddr().
►Return asynError if device is already connected.
►Setup connection and/or device.
►Call pasynManager->exceptionConnect().
►Every device (port/address) is connected only once at a time, even

when many asynUsers use it. The provided asynUser is the first one
that uses this device.

Page 59 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Step 2: Write driver methods (cont'd)
■Write disconnect() method
►Close conenction to actual device, free handle from 3rd party software

or similar.
►For multi-devices, call pasynManager->getAddr().
►Return asynError if device is not connected.
►Cleanup device and/or connection.
►Call pasynManager->exceptionDisconnect().

Page 60 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Step 3: Write configuration function
■ This function is called in the startup script to set up the port.
■Give it a useful and specific name
►Not just portInit or configure.
►Examples: drvAsynSerialPortConfigure,
drvAsynIPPortConfigure, vxi11Configure

■ Export it to iocsh.
■ First argument should be port name.
■Give useful default values to as many arguments as possible.
■ Check all arguments! People write stupid stuff in startup scripts.

Page 61 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Configuration function: Fill private structure
■ Allocate and fill private structure with everything you need to

operate the port.
►Mutexes, timers, other resources.

■ Fill asynInterface structures in your private structure.
►Fill interfaceType: what type of interface is it?
►Fill pinterface: pointer to your method table.
►Fill drvPvt: pointer to your private structure.

■ Fill method tables with pointers to your methods.
►Base interfaces provide initialize() method to fill method

table with default implementations.

Page 62 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Configuration function: Register to asynManager
■ Call pasynManager->registerPort().
►This tells asynManager if port has multiple addresses, if port can block

and if autoConnect is enabled.
■ For each supported interface call
pasynManager->registerInterface().

■ For each interface that generates interrupts call
pasynManager->registerInterruptSource().
► Interrupt may actually be implemented as poll thread or any type of

event handler.
► It means just: new data has arrived asynchronously

Page 63 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Step 4: Write interrupt handler (optional)
■ Details strongly depends on implementation
►Connect handler to hardware interrupt.
►Create thread that polls hardware periodically.
►Register to event system of 3rd party software.

■ Call pasynManager->interruptStart().
►You get a list of clients which have subscribed for this interrupt.

■ For each client, call interrupt callback and provide value.
■ Call pasynManager->interruptEnd().

Page 64 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Advanced concepts
■ Exceptions
►Users can subscribe for special events, e.g. connect/disconnect.

■ Interpose interfaces
►Additional transparent layers can be put between port and user.
►These layers can pre/post process data.
►asynOctet terminators (eos) are implemented this way.

■ asynOption: Port options (key, value pairs)
►Example: baud rate, parity, etc for serial port.

■ asynDrvUser: Named driver resources

Page 65 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

Examples of port drivers in asyn package
■ asynOctet / asynGpib drivers
►asyn/drvAsynSerial/
►asyn/vxi11/
►asyn/ni1014/
►asyn/gsIP488/
►asyn/linuxGpib/

■ register driver examples
► testEpicsApp/src/

Page 66 Dirk Zimoch, 2007

Introduction to asynDriverIntroduction to asynDriver

More information
■ AsynDriver

► www.aps.anl.gov/epics/modules/soft/asyn/
■ StreamDevice

► epics.web.psi.ch/software/streamdevice/
■ linuxGpib

► linux-gpib.sourceforge.net/
■ Drivers/device supports using asynDriver

► www.aps.anl.gov/aod/bcda/synApps/
■ Talks about asynDriver

► www.aps.anl.gov/aod/bcda/epicsgettingstarted/iocs/ASYN.html
► www.aps.anl.gov/epics/docs/USPAS2007.php

