

 1
© 2007 by embedded brains GmbH

Introduction to RTEMS

RTEMS in one day
by Thomas Dörfler

embedded brains GmbH
Obere Lagerstr. 30
D-82178 Puchheim

Germany

 2
© 2007 by embedded brains GmbH

Navigator

Overview

Host And Target Environment

RTEMS Structure

Classic API

System Configuration

“Hello World” Tour

 3
© 2007 by embedded brains GmbH

Basic Features
● Object-oriented
● Multitasking
● Multi-Processor Support
● Portable
● Various APIs
● C, C++, Ada supported
● Realtime-oriented
● Versatile Synchronization

and Communication
Mechanisms

● Configurable
● User Extensible
● File System Support
● Networking Support

And by the way...

● Open Source

 4
© 2007 by embedded brains GmbH

RTEMS: What It Is
● Operating System for Realtime and/or Embedded

Applications

● Supports same APIs on all major 32 bit architecture s

● Allows efficient use of processing time and memory
resource

● Reliable realtime behaviour

● Tailored for
● low memory footprint (e.g. 256KByte RAM, 512 kByte ROM)
● Low processing power (e.g. 25MHz M68k systems)

 5
© 2007 by embedded brains GmbH

RTEMS: What it isn't
● No sophisticated MMU support

● No virtual memory
● No memory protection

● No (or limited) multi-user environment
● No access security between internal tasks

● File system
● Memory
● OS objects

 6
© 2007 by embedded brains GmbH

RTEMS APIs

Classic API
● Implements “RTEID”

“Real-Time Executive
Interface Definition”
standard

● Also available in Closed-
Source products like
pSOS+ TM

Posix API
● Implements subset of

POSIX 1003.1 standard
● Also available e.g. under

Linux vxWorks TM

ITRON API
● “The Realtime Operating

Nucleus”
● Only partially

implemented

Other APIs
● Can be implemented

based on RTEMS
“SuperCore” architecture

 7
© 2007 by embedded brains GmbH

Navigator

Overview

Host And Target Environment

RTEMS Structure

Classic API

System Configuration

“Hello World” Tour

 8
© 2007 by embedded brains GmbH

Host Platforms

Primary supported Host Platforms:
● Linux
● Win32/cygwin
● New: Win32/MinGW

Usable Host Platforms:
● Apple Mac OS-X
● SunOS/Solaris
● Other Unix Derivates with GNU Toolchain support

 9
© 2007 by embedded brains GmbH

Build Environment

Primary Tools used to build RTEMS and Applications:
● GCC(4.x)
● Binutils(2.17)
● Gnu Make

Secondary Tools for Source Maintainance:
● automake/autoconf
● Tex tools (Documentation)

 10
© 2007 by embedded brains GmbH

Debugging

Gdb-based
● gdb-stub can be linked to application
● Alternative interfaces:

● Mpc8xx-lib, Abatron bdi-2000, others

● Gdb can be integrated into various IDEs:
● Insight, DDD, Eclipse...

● OS object display through gdb macros

Other vendor tools
● Lauterbach TRACE32, ... others

 11
© 2007 by embedded brains GmbH

Target Architectures
● RTEMS can be ported to

almost all 32 bit
architectures

● Some special
architectures also
supported

Current Architectures:
● PowerPC
● M68K/ColdFire
● I386
● ARM
● BlackFin
● MIPS
● NIOS
● Super-H
● SPARC

 12
© 2007 by embedded brains GmbH

Target BSPs
M68k

gen68302
mrm332

mvme162
sim68000
dmv152

gen68340
mvme136
mvme167

efi332
gen68360
mvme147
ods68302

csb360
efi68k

ColdFire
uC5282

mcf5206elite
av5282

idp

Arm7/9
armulator
csb337
gbag
p32

csb336
edb7312
vegaplus

BlackFin
ezKit533

TI c4x
c4xsim

h8300
h8sim

hppa1.1
pxfl

simhppa

unix
posix

nios
nios2_iss

PowerPC
eth_comm
mvme2307
score603e

gen405
mbx8xx

mvme5500
gen5200
mcp750
ss555

dmv177
motorola_ppc

ppcn_60x
ep1a

mpc8260ads
psim
virtex

MIPS
csb350

hurricane
rbtx4938
jmr3904
p4000

genmongoosev
rbtx4925
p4000

i386
go32
pc386

ts_386ex
Force386
 i386ex

sh
simsh4
gensh1
gensh2
gensh4
shsim

Sparc
leon

leon2
leon3
erc32

 13
© 2007 by embedded brains GmbH

Navigator

Overview

Host And Target Environment

RTEMS Structure

Classic API

System Configuration

“Hello World” Tour

 15
© 2007 by embedded brains GmbH

Source Code Structure
rtems

auto* c cpukitmake doc testsuites tools

samples

sptests

mptests

itrontests

psxtests

libtests
ftpd/httpd

rtems/itron/posix

libfs

libmisc

libnetworking

score/sapisrc

optman

libchip

lib

ada
libcpu

libbsp

 16
© 2007 by embedded brains GmbH

RTEMS File Systems

Internal File Systems
● IMFS “In Memory FS”

● Root-FS
● Kept in RAM (Heap)

● tar fs
● Linked from IMFS into tar

image

● miniIMFS
● Reduced version of IMFS

Non-volatile File Systems
● DOSFS: FAT file system

● compatible to “industrial
standard”

● Used for hard discs and CF

Networked File Systems
● FTPFS

● File based access to FTP
server

● TFTPFS
● NFS

 17
© 2007 by embedded brains GmbH

Networking

FreeBSD Stack ported to
RTEMS

● robust
● flexible
● standard socket calls
● multiple Interfaces
● support for Ethernet and

PPP

Network Servers
● HTTP server (GoAhead)
● FTP server
● SNMP server (contrib)
● Telnet server (“shell”)

Network Clients
● BOOTP/DHCP client
● TFTP filesystem
● FTP filesystem

 18
© 2007 by embedded brains GmbH

Navigator

Overview

Host And Target Environment

RTEMS Structure

Classic API

System Configuration

“Hello World” Tour

 19
© 2007 by embedded brains GmbH

Classic API
● Conforms to RTEID

realtime API standard (like
pSOS+ etc.)

● First API available on
RTEMS

● Design based on various
objects

Object types available:

● Tasks

● Semaphores

● Message Queues

● Regions

● Partitions

 20
© 2007 by embedded brains GmbH

Classic API: Objects

Classic API object types:
● Tasks
● Semaphores
● Message queues
● Rate monotonic periods
● Partitions
● Regions

Identification
● Each object has unique

(32 bit) identifier
● ID contains:

● Object type
● Node number
● Index

ObjType Node Index

Object ID

API

 21
© 2007 by embedded brains GmbH

Classic API: Object Methods
rtems_xxx_create(rtems_name name,rtems_id *id,...)

● Creates object of type xxx
● name: up to four ASCII characters as arbitrary name

● *id: ptr to location, where object id will be stored

rtems_xxx_delete(rtems_id *id)

● Deletes object of type xxx
● Wakes up any tasks waiting for this object

rtems_xxx_ident(rtems_name name,rtems_id *id)

● Determines object id of (first) object with given n ame

 22
© 2007 by embedded brains GmbH

Classic API: Tasks

Definition
● Task is a processing

entity that processes and
data and interacts with
(OS) objects

● Multiple tasks share the
processor hardware

● Scheduler decides, which
task is allowed to use the
processor

Attributes
● Fixed at creation time

● FPU context (yes/no)
● Stack size

Mode options
● Changeable during runtime

● (scheduling) priority
● Preemption
● Timeslicing
● Async. Signal Handling

 23
© 2007 by embedded brains GmbH

RTEMS Scheduling

RTEMS supports
● 256 task priorities
● Unlimited tasks with same

priority
● “Ready” queue for each

priority level
● Bitmap-based fast lookup

to determine highest-
priority level with a
“ready” task

128

129

130

131

132

133

P
rio

rit
y

Round-Robin

 24
© 2007 by embedded brains GmbH

RTEMS Scheduling Options

Time Slicing
● Task will yield the

processor when it has
executed for one timeslice

● Other tasks of same
priority have a chance to
run

● Implements a Round-
Robin scheduling scheme
between tasks of same
priority

Preemption
● When enabled: Scheduler

can preempt task at any
time to run a different
(higher priority) task

● When disabled: Task
continues to execute,
even if a higher priority
task becomes ready

● Non-preemptive task
executes, until it calls a
blocking function

 25
© 2007 by embedded brains GmbH

Classic API: Inter Task
Communication

Mechanisms available to implement Inter Task
Communication

● Notepads

● Events

● Signals

● Semaphores

● Message queues

● Shared memory/variables

 26
© 2007 by embedded brains GmbH

Classic API: Task Notepads

Each task has 16 32-
bit-“Notepads” as local
IPC variables

Any task can get or set the
notepads of a known task

Get a Notepad:
rtems_status_code

rtems_task_get_note(
 rtems_id id,
 rtems_unsigned32 notepad,
 rtems_unsigned32 *note
);

Set a Notepad:
rtems_status_code

rtems_task_set_note(
 rtems_id id,
 rtems_unsigned32 notepad,
 rtems_unsigned32 value
);

 27
© 2007 by embedded brains GmbH

Classic API: Task Events

Each task has a 32 bit event
word

Set an event:
rtems_status_code

rtems_event_send(
 rtems_id tid,
 rtems_event_set event_in
);

Get own events:
rtems_status_code

rtems_event_receive (
 rtems_event_set event_mask,
 rtems_option option_set,
 rtems_interval ticks,
 rtems_event_set *event_out
);

Options:
● wait/nowait
● wait for any/all events

x 1 x x 1 x x x

Note:
● There is no “queue” of

events!

 28
© 2007 by embedded brains GmbH

Classic API: Signals and ASRs

What is a signal?
● RTEMS defines 32 signals

(bits) per task
● Tasks/ISRs can send

signals to arbitrary tasks
● Signals are rejected,

when receiving task has
not ASR

● Signals of a task are OR'd
together to a 32 bit mask

What is an ASR?
● “Asynchronous Service

Routine”
● Executes in the task's

● context
● processing time

● called, when
● signal was sent to the task

and
● task gets scheduled again

 29
© 2007 by embedded brains GmbH

Classic API: ASR Installation

Task can establish an ASR to
handle received signals

rtems_status_code
rtems_signal_catch(

 rtems_asr_entry asr_handler,
 rtems_mode mode
);

Task can enable/disable ASR
execution using its own task
mode setting
(RTEMS_ASR/RTEMS_NO_ASR)

rtems_status_code
rtems_task_mode(

 rtems_mode mode_set,
 rtems_mode mask,
 rtems_mode *previous_mode_set
);

 30
© 2007 by embedded brains GmbH

0 0 0 0 0 0 0 0

Classic API: Signals and ASRs

Any task can send signals to
a certain task:

rtems_status_code
rtems_signal_send(

 rtems_id task_id,
 rtems_signal_set signals
);

Example of an ASR
rtems_asr_entry my_asr
 (rtems_signal_set signals)
{
 if (signals & MY_KILL_SIG) {
 /* ... cleanup resources ..*/
 rtems_task_delete(RTEMS_SELF);
 }
 if (signals & MY_DUMP_SIG) {
 my_dump_task_state(...);
 }
 ...
}

0 1 0 0 1 0 0 0

 31
© 2007 by embedded brains GmbH

Classic API: Message Queues

Definition:
● A message queue is like a

FIFO for messages
● Queue can store a limited

number of messages

Features and Options:
● Max. message size
● Max. message count
● “urgent” and “broadcast”

messages
● wait policy

● FIFO or PRI

TxTask1

RxTask1

RxTask2

RxTask3

TxTask2

 32
© 2007 by embedded brains GmbH

Classic API: Message Queues

RxTask1

RxTask2

RxTask3

rtems_message_queue_receive

 (id,msgbuf,*size,RTEMS(_NO)_WAIT,timeout)

● Get message from front of queue

 33
© 2007 by embedded brains GmbH

Classic API: Message Queues

TxTask

RxTask1

RxTask2

RxTask3

rtems_message_queue_send(id,msgbuf,size)

● Put message to rear of a queue

 34
© 2007 by embedded brains GmbH

Classic API: Message Queues

TxTask

RxTask1

RxTask2

RxTask3

rtems_message_queue_urgent(id,msgbuf,size)

● Put message to front of a queue

 35
© 2007 by embedded brains GmbH

Classic API: Message Queues

TxTask

RxTask1

RxTask2

RxTask3

rtems_message_queue_broadcast

 (id,msgbuf,size)

● Send message to all waiting tasks

 36
© 2007 by embedded brains GmbH

Classic API: Message Queues

RxTask1

RxTask2

RxTask3

rtems_message_get_number_pending(id,*count)

● Get current message count of a queue

*count=2

 37
© 2007 by embedded brains GmbH

Classic API: Message Queues

RxTask1

RxTask2

RxTask3

rtems_message_queue_flush(id,*count)

● Clear all messages in queue

*count=3

 38
© 2007 by embedded brains GmbH

Classic API: Semaphores

Definition:
● OS object used to ensure,

that task access to shared
resources is properly
limited.

● Can have two (binary) or
multiple (counting) states

● State “0” means that
access is blocked

Features:
● Binary(0/1) or Counting

(0-n)
● FIFO or priority

scheduling
● Priority inheritance
● Priority ceiling

0

1

0

1

2

3

 39
© 2007 by embedded brains GmbH

Classic API: Semaphore Creation

rtems_semaphore_create (name, count, attrib,
ceiling, *id)

● Create a semaphore
● Attributes:

● Task wait by: RTEMS_FIFO or RTEMS_PRIORITY
● Semaphore type: COUNTING or BINARY or SIMPLE_BINARY
● Priority inheritance: YES or NO
● Priority ceiling: YES or NO
● Scope: LOCAL or GLOBAL

 40
© 2007 by embedded brains GmbH

Classic API: Semaphore Obtain

rtems_semaphore_obtain (name, options, timeout)

aquire lock to shared resource
● Optionally wait, until semaphore is available

0

1

0

1

2

3

 41
© 2007 by embedded brains GmbH

Classic API: Semaphore Release

rtems_semaphore_release(name)

release lock of shared resource
● The next waiting task may immediately gain the sema phore

0

1

0

1

2

3

 42
© 2007 by embedded brains GmbH

Classic API: Semaphore FIFO
Scheduling

● When Semaphore
becomes available, first
waiting task gets it

0

1

30

20

10

3020

20

 43
© 2007 by embedded brains GmbH

Classic API: Semaphore Priority
Scheduling

● When Semaphore
becomes available,
highest priority waiting
task gets it

0

1

10

20

30
1020

20

 44
© 2007 by embedded brains GmbH

Classic API: Priority Inversion
● Task with medium

priority(15) can block high
priority(10) task, because
low priority(20) task holds
semaphore

0

1

10

20

1020

20

15

 45
© 2007 by embedded brains GmbH

Classic API: Priority Inheritance
● Low priority(20) task

holding semaphore
inherits high priority(10)
of blocked task

● medium priority(15) can't
block high priority(10)
task 0

1

10

20

1010i20

20

15

 46
© 2007 by embedded brains GmbH

Classic API: Regions

Definition:
● A region is a memory

area, that provides
service to allocate (and
return) variable length
memory segments

● Allows flexible memory
usage

Features:
● Region is created in

contiguous memory area
● Can be extended from

different areas
● Allocates segments in

multiples of its page size
● Tasks waiting for segment

can optionally be blocked

 47
© 2007 by embedded brains GmbH

Classic API: Regions

rtems_region_create (name, *start, length,
 page_size, FIFO|PRIO, *id)

● Create a region

lengthstart

page_size

 48
© 2007 by embedded brains GmbH

Classic API: Region Get Segment

rtems_region_get_segment (id, size,
RTEMS_(NO_)WAIT, timeout, void **segment)

● Get segment from region

 49
© 2007 by embedded brains GmbH

Classic API: Region Return Segment

rtems_region_return_segment

 (id, void *segment)

● Return segment to region

 50
© 2007 by embedded brains GmbH

Classic API: Region Fragmentation

1: Get four different segments

2: Return two segments

3: Get same two segments again, with different orde r

???

Example:

 51
© 2007 by embedded brains GmbH

Classic API: Partitions

Definition:
● A partition is a memory

area, that provides
service to allocate (and
return) fixed length
memory buffers

● Allows simple memory
management

● Avoids fragmentation

Features:
● Partition is created in

contiguous memory area
● Allocates buffers with

fixed size
● Tasks waiting for buffer

cannot block

Question:
● How can we implement a

blocking mechanism for
tasks needing a buffer?

 52
© 2007 by embedded brains GmbH

Classic API: Partitions

rtems_partition_create (name, *start,
length, buffer_size, LOCAL|GLOBAL, *id)

● Create a partition

lengthstart

buffer_size

 53
© 2007 by embedded brains GmbH

Classic API: Partition Get Buffer

rtems_partition_get_buffer (id, void
**buffer)

● Get one buffer from partition

 54
© 2007 by embedded brains GmbH

Classic API: Partition Return Buffer

rtems_partition_return_buffer (id,

 void *buffer)

● Return one buffer to partition

 55
© 2007 by embedded brains GmbH

Classic API: Partition

1: Get four different buffers

2: Return two buffers

Example:

3: Get same two buffers again, with different order

Fragmentation

 56
© 2007 by embedded brains GmbH

Navigator

Overview

Host And Target Environment

RTEMS Structure

Classic API

System Configuration

“Hello World” Tour

 63
© 2007 by embedded brains GmbH

Navigator

Overview

Host And Target Environment

RTEMS Structure

Classic API

System Configuration

“Hello World” Tour

 64
© 2007 by embedded brains GmbH

“Hello World” Tour

Live Demonstration:
● How to create an RTEMS

application
● How to test it in a gdb

simulator

(Place for your notes)

 65
© 2007 by embedded brains GmbH

RTEMS Development

Development Model of
RTEMS:

● New features and
improvements are
user/application driven

● User contributions or
funding of development to
support companies

● Source maintenance by
OAR Corp, Huntsville

Support:
● User's Mailing List
● Commercial support:

● OAR Corp, Alabama, USA
● Cybertec, Australia
● embedded brains GmbH,

Germany

 66
© 2007 by embedded brains GmbH

RTEMS Training

Regular Open Classes are held in:
● Huntsville, Alabama (organized by OAR Corp)
● Munich, Germany (organized by embedded brains GmbH)

Specialized and On-Site classes available on reques t

 67
© 2007 by embedded brains GmbH

RTEMS Links

http://www.rtems.com
● Main website with

● sources, tools, CVS
● Documentation and Wiki
● Mailing list archive

http://www.embedded-brains.de/
● Website of embedded brains GmbH
● Products and support services for RTEMS/embedded de sign

Coming soon:

http://www.rtems.de
● Mirror of RTEMS sources, tools, CVS, documentation

ERROR: undefined
OFFENDING COMMAND: ��

STACK:

