# LCLS Beamline Control and Data Acquisition

Bob Sass, Erik Rogind, Bob Dalesio 4/24/2007



### LCLS Construction



### NEH PPS



| Hutch            | Access Requirements                          |                                         |
|------------------|----------------------------------------------|-----------------------------------------|
|                  | Requirements Set A                           | Requirements Set B (if applicable)      |
| Hutch 1          | <ol> <li>SXR1 ST1 and ST2 IN</li> </ol>      | 1) EXP 1 offline                        |
|                  |                                              | <ol><li>SXR1 ST3 and ST4 OUT</li></ol>  |
| Hutch 2          | <ol> <li>SXR2 ST1 and ST2 IN</li> </ol>      | <ol> <li>SXR2 ST1 and ST2 IN</li> </ol> |
|                  | <ol><li>SXR1 ST1 and ST2 <i>IN</i></li></ol> | <ol> <li>SXR1 ST3 and ST4 IN</li> </ol> |
| Hutch 3          | <ol> <li>BL0-3 ST1 and ST2 IN</li> </ol>     | <ol> <li>HXR ST1 and ST2 IN</li> </ol>  |
|                  | 2) EXP4 in Mode 1                            |                                         |
| Hutch 3 Shielded | <ol> <li>HXR ST1 and ST2 IN</li> </ol>       | -na-                                    |
| Enclosures       |                                              |                                         |

# Some Considerations

- Beam pulse rate 120 Hz
- Beam length: ~200 fsecs
- Pulse to pulse energy/position variation 10-20%
- Each sample injected into the beam may have a different orientation relative to the beam
- Each pulse destroys the sample

# **Control System Requirements**

- No 120 Hz control in experiment
  - Slow Control to Attenuators
  - Slow Position / Power Supply control
  - Only 120 Hz beam triggers to sample source and detectors
- Send 120 Hz beam related data to Data Acq.
- Save slow beam related data
- Turn off beam before next beam pulse for machine protection (8 msec)
- Disable data acquisition before next beam pulse to reduce the data flow
- Control ~200 motors, 35 power supplies, vacuum
- 120 Hz Diagnostics include paddle steering, 8 GHz 10 bit digitizer, 1 mega-pixel cameras
- 120 Hz diagnostics back to machine for control?

### Proposed Control System Elements

- EPICS used for the experiment control
- VME PowerPCs running RTEMS for most control
- cPCI CPU for Acqiris Board (8 GHz, 10 bit)
- Micro Research EVRs for timing (8 nsec resolution, < 20 psec jitter)
- SCRAMNet for low latency data transport (< 1 msec)
- In-house Machine Protection System (< 3 msec)
- Hytec motor controllers for position controls (register based)
- AB Control Logix PLC for vacuum control
- Ethernet power supply control
- SynApps for scans and device control APS
- Beamline XML display generation Diamond
- Image analysis Jlab

肉包子打狗



# Data Acquisition Requirements

- Save multiple detector data at the beam rate including 1 mega pixel image and vector data
- 1st year: save data @ 10-30 Hz
- 2nd year save data @ 120 Hz --- 250 Mbytes per second (>2 terabytes per day)
- Future: save 10 mega pixel Images @ 120 Hz
- Save Photon (and electron) Beam Related Data with instrument data max 200 parameters
- All data must be time stamped for event correlation
- Provide Images to operators at 5 Hz
- Support operator configuration of detector configuration / experiment parameters
- Analysis and compression of data at beam rate?
- Use Channel Archiver Data Format for ease of correlation?
- How is meta data formatted for storage with image?
- Hardware:
  - Custom made CCDs
  - Acqiris 8 GHz, 10 bit digitizer
  - 120 Hz commercial cameras?
- Limits of channel archiver / channel access? Is it a viable backup for the first year?

# Data Acquisition Elements

- CE Board developed at SLAC for data acquisition
- EPICS running under RTEMS from on-board processor
- Only fast serial and Gbit Ethernet interfaces
- No on-board EVR
- All timing data and beam related data over dedicated Ethernet
- FPGAs available for beam rate analysis

#### **XES Detail – Data Acquisition**

1. Channel Access (Ethernet)

2. Beam Line 120 Hz Data

3. EVR (Fiber) 6. DAQ Data to SCCS

4. MPS (Reflective Memory Fiber)

5. SLAC WAN (Ethernet)



**D. ADC Control & Digitized Data** 

E. Detector Control & Digitized Data

F. DAQ Data to Cache

G. Visual Monitor Data

# Data Retrieval Requirements

- Web access to data
- Protected access to private data
- Correlate machine diagnostics with experimental data
- Provide analysis tools
- Retain data for some period?
- Retrieval rates?
- Data Rates?



#### **Archive Data Management System Overview**



#### Archive Retrieval/Analysis System Overview



## Conclusions

- Data acquisition requires real-time data from the experiment (120 Hz) for offline analysis
- Current requirements disable data taking when beam is not coming our way or the experimental beamline is not ready for data
- May use diagnostic data to further reduce the data rate from 250 Mbytes per second
- May need to get experimental data to the accelerator for optimizing the beam control
- There is a very close relationship between machine control and experiment control.
- The better the beam quality the more data we have to store.
- We have an alarming amount of data to store.