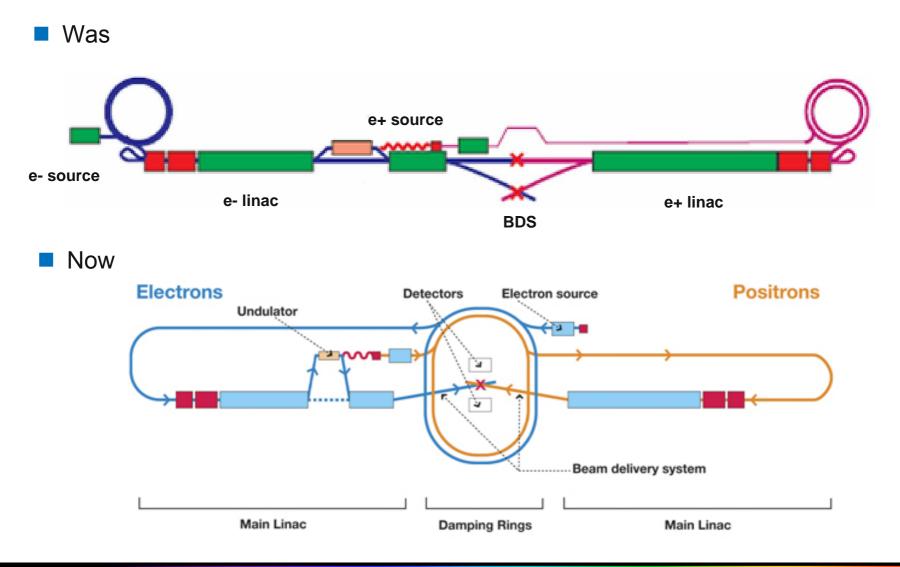


... for a brighter future

UChicago
Argonne

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC


ILC Controls Update

Claude Saunders

Argonne National Laboratory – Advanced Photon Source

EPICS Collaboration Meeting – DESY, April 2007

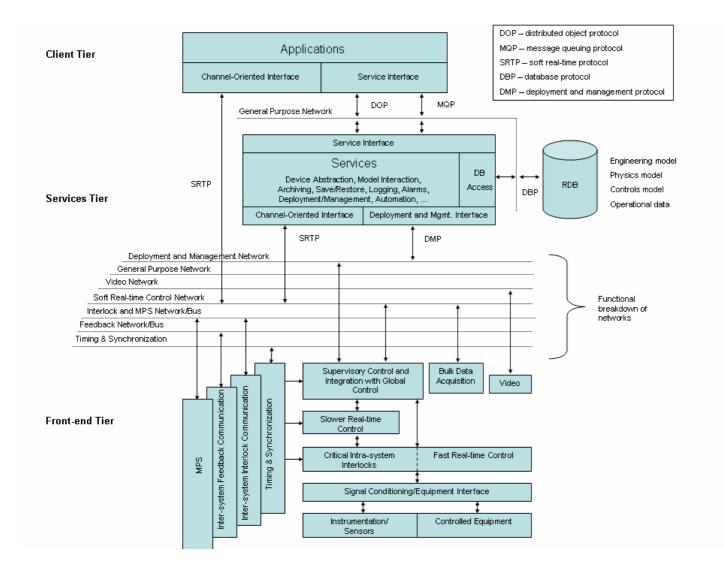
ILC Design Changes since June 2006

ILC Reference Design Report

- Completed March 2007 (more or less)
 - Available at www.linearcollider.org
 - Includes initial value estimate
 - 1.78 Billion (ILC Units) for site-dependent costs, such as the costs for tunneling in a specific region
 - 4.87 Billion (ILC Units) for shared value of the high technology and conventional components
 - 13,000 person-years effort (== 22 million person-hours)
 - 1 ILC Unit = 1 US\$ 2007 (== 0.83 Euro, == 117 Yen)
- Next major task is the Engineering Design Report
 - And the R&D program necessary to support an engineering design
 - Due roughly end of 2009

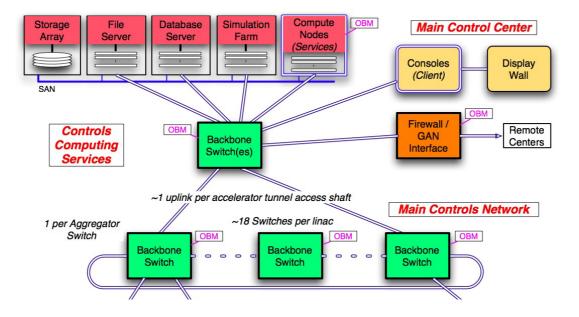
RDR Control System Chapter

- Section 3.12 of the RDR contains:
 - Overview
 - Requirements and Technical Challenges
 - Impact of Requirements on the Control System
 - Control System Model
 - Remote Access / Remote Control
 - Timing and RF Phase Reference
 - Beam-based Feedback
 - Information Technology (IT) Computing Infrastructure
 - Cost Estimation, Bases of Estimates
 - Table of Components

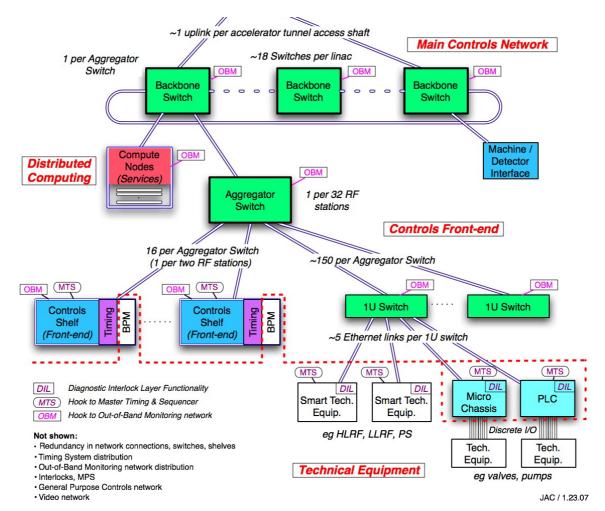


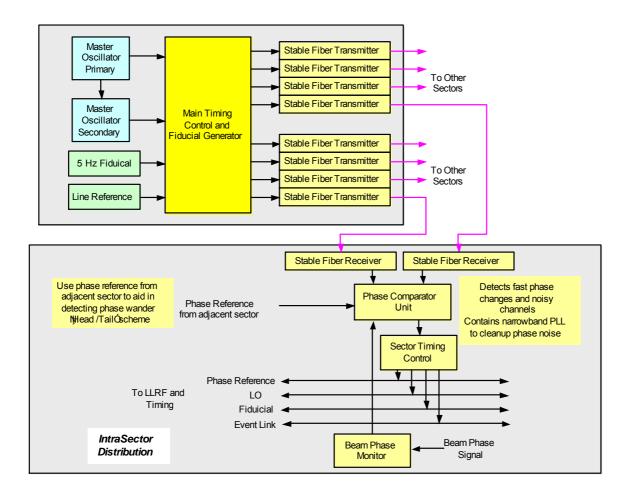
Requirements and Technical Challenges

- Scalability
 - Quantity of technical systems
 - Physical distances between systems
- High availability
 - Simulations indicate control system must provide 99% to 99.9% availability
 - This in turn implies individual "IOC" must be 99.999% available
- Extensive automation and beam-based feedback
- Synchronous control system operation
- Precision RF phase reference distribution
- Standards and standardization, quality assurance
- Requirements on technical equipment
- Diagnostic interlock layer


Control System Functional Model

Control System Physical Model


Above Ground - plus initial underground backbone


Control System Physical Model

Below Ground

Timing and RF Phase Reference

Controls R&D Program – Americas Region

- I am speaking from perspective of Americas region. Similar efforts in European and Asian regions. Goal is to collaborate and coordinate as much as possible.
- Assortment of R&D work going on right now in FY 2007 (Fiscal Year)
- Now planning FY 2008/2009 R&D program
- ILC Controls is part of ILC Global Systems WBS x.2
 - Other Global Systems are Installation, Commissioning and Operations, LLRF, Instrumentation and Feedback, Survey and Alignment

Program Areas for FY 08/09

- Accelerator Design
 - EDR (Engineering Design Report) authoring
 - Requirements development
 - Standards and methodology development

R&D

- In support of the EDR
- LLRF algorithms, beam instrumentation, high availability, front-end electronics platform, diagnostic controller
- Other R&D work in plan, but less likely to be funded, or none requested:
 - Control system architecture, installation, survey and alignment
- Collaborate, collaborate, collaborate

Program Areas for FY 08/09

Facilities

- Several facilities under construction at Fermilab, called ILCTA (ILC Test Accelerator) as a whole
- Most Global Systems work here involves developing controls, instrumentation, and LLRF for running ILCTA. Timescale and goals are somewhat different than ILC controls research.
- However, the NML facility of ILCTA will serve as a real system in which to test and evaluate prototypes coming from R&D program.

Program Management

– Managing all of the above

High Availability and Electronics Platform Areas

- High Availability
 - NOT just redundancy
 - Conflict avoidance
 - Model-based resource monitoring (IPMI and SNMP)
 - Model-based configuration management
 - Automated diagnosis
 - Adaptive control
 - Controller redundancy and failover
- Electronics Platform
 - ATCA (Advanced Telecommunications Computing Architecture)
 - BPM digitizer under development at Fermilab
 - uTCA
 - AMC cards for analog I/O (how to route I/O to back of chassis?)
 - Shelf Management (IPMI over RMCP, IPMB, IPMC, BMC, etc...)
 - Analog electronics environment characterization

ILC Global Systems

This is an open process.

- People are contributing at all different levels of effort and degrees of formality.
- Please contact people with your ideas
 - Top down via your region's ILC Global Systems Manager
 - John Carwardine Argonne National Laboratory
 - Stefan Simrock DESY
 - Shinichiro Michizono KEK
 - Bottom up via many participants

