
Experience with a Distributed Revision Control System

Experience with a Distributed Revision Control System

Things we all know about CVS
Weaknesses

• cannot version directories
• thus cannot handle renames (while keeping history)
• has no idea about (atomic) changesets
• merging between branches is difficult and error-prone
• working copies contain no history
• (only) one central repository per project

Strengths

• very stable
• fast (enough)
• portable
• problems well-known, certain work-arounds exist
• GUIs (tkCVS, ...)

Distributed RCS/Benjamin Franksen/EPICS Meeting 2007 Hamburg

Experience with a Distributed Revision Control System

What do we do about it?
everyone wants to get away from CVS, but...

• there is no clear established successor
• instead: many different tools, some similar to CVS, some very different
• some of the more well-known alternatives are:

What do we chose to replace CVS?

Distributed RCS/Benjamin Franksen/EPICS Meeting 2007 Hamburg

Subversion
SVK
Arch(tla)/ArX
Bazaar
Darcs
Git
Mercurial
Monotone
... (there are many more)

Experience with a Distributed Revision Control System

What BESSY (control system group) did

• wide-spread dissatisfaction with CVS
• common conviction that it should be replaced
• plus rising pressure due to upgrade from EPICS 3.13 to 3.14

(development on two separate branches in parallel; experience told us not to do this with CVS)

• but no effort to evaluate all the alternatives

 => choose the most conservative solution => Subversion

• rationale: minimize risk (stable product), maximize interoperability (e.g.
support for integration with bug trackers like trac)

• initial effort to convert our repositories from CVS to Subversion was
seamless and easy (though one-way)

• a promising start...

Distributed RCS/Benjamin Franksen/EPICS Meeting 2007 Hamburg

Experience with a Distributed Revision Control System

Subversion

• centralized model, like CVS
• but solves many of its shortcomings: versions directories, handles

renames, atomic changesets, ...
• notions of branch and tag unified under the concept of history preserving

copy

• the major problem: development on multiple branches in parallel remains
very maintenance intensive
- Subversion does not track which changes have been merged from one
 branch to another (external tools exist which support this; still tedious)

- if a change gets merged twice, many spurious conflicts result which
 have to be resolved manually
=> merging is difficult and error-prone

Distributed RCS/Benjamin Franksen/EPICS Meeting 2007 Hamburg

Experience with a Distributed Revision Control System

Darcs: Overview

• fundamental notion is change, rather than version
• based on a mathematical formalism (theory of patches)
• takes the idea of decentralization to its extreme
• unique merging capabilities
• interactive command line interface
• written by a physicist (David Roundy), programmed in Haskell :-)

Distributed RCS/Benjamin Franksen/EPICS Meeting 2007 Hamburg

Experience with a Distributed Revision Control System

Darcs: Change based, Patch Formalism
• fundamental notion is the change
• a version is a set of changes (applied to the empty source tree)
• a patch is a description of a change
• a set of changes is stored as a sequence of patches

• primitive patches include
- hunk (zero or more adjacent lines in a file replaced by other lines)

• - rename, move, add and delete files and directories
• - replace a token (unique darcs feature)

• patches have certain algebraic properties
• they are all invertible
• two patches can commute => they can be applied in any order
• if not, then one depends on the other
• darcs discovers dependencies and selects dependent patches if

necessary

Distributed RCS/Benjamin Franksen/EPICS Meeting 2007 Hamburg

Experience with a Distributed Revision Control System

Darcs: Radically Decentralized

• strictly 'egalitarian': all repositories are (technically) equals
• working copy == repository == branch
• select patches from anywhere in the history of a repo (cherry-picking)
• directly exchange patches between repos

=> no 'central repository' bottleneck

• history is a local concept => no global history for the whole project
• knowledge about whole project is indeed distributed among existing repos

• remote access via standard protocols (ssh/http/mail), no special protocol
or server needed, read only access (via http) is trivial to administer

Distributed RCS/Benjamin Franksen/EPICS Meeting 2007 Hamburg

Experience with a Distributed Revision Control System

Darcs: Branching and Merging
• patches are identified by timestamp, author (email address), and name

(one-line comment)
• patches are globally unique entities
• usually selected by name

• merging is a day-to-day activity
- no merge command: 'push', 'pull', and 'apply' all automatically
 perform merging when and if needed
- easy to avoid conflicts

• in case of conflict:
- darcs marks conflicting patch as a special merger-patch
- conflicts have to be resolved manually

Distributed RCS/Benjamin Franksen/EPICS Meeting 2007 Hamburg

Experience with a Distributed Revision Control System

Distributed RCS/Benjamin Franksen/EPICS Meeting 2007 Hamburg

Experience with a Distributed Revision Control System

Darcs: User Interface
• very nice, interactive command line interface
• no GUI yet :-(

• some nomenclature
 record locally create a patch (like cvs commit but off-line)
 pull receive new patches from a remote repo
 push submit new local patches to a remote repo
 send create a patch bundle and send per email to author
 apply apply a patch bundle (e.g. received per mail)

Distributed RCS/Benjamin Franksen/EPICS Meeting 2007 Hamburg

Experience with a Distributed Revision Control System

Experiences using Darcs
• easy to learn and use
• branching and merging is simple, safe, and effective
• often used: locally record changesets w/o publishing them, e.g. for

- temporary debugging code
- experimental changes

• often used: local branches

• control system development
=> upgrades must be incremental
=> multiple branches with many parallel changes

• BESSY internal work flow not much different
- central repository contains the 'official head' of both the
 EPICS 3.13 and 3.14 branches (for each project/module)
- developers keep local branches/repos/working-copies as they see fit
- developers push their changes to central repo (after testing)

Distributed RCS/Benjamin Franksen/EPICS Meeting 2007 Hamburg

Experience with a Distributed Revision Control System

Distributed RCS/Benjamin Franksen/EPICS Meeting 2007 Hamburg

Experience with a Distributed Revision Control System

Experiences using Darcs: Caveats

• recording changes separate from publishing them
=> need to remember to publish changes

• tags are different
- a tag is a null change which (artificially) depends on other patches
 (by default those that exist in the current repo at the time the tag is created)

- simplify reproduction of a certain version of the source tree
- regular tagging is good
- need convention for tag names (so they are unique)

• keep patches small and independent
=> avoids conflicts
=> think before recording

• unusual: darcs does not preserve/track file permissions

• security agnostic: except support for ssh, access must be restricted by
underlying OS / filesystem

Distributed RCS/Benjamin Franksen/EPICS Meeting 2007 Hamburg

Experience with a Distributed Revision Control System

Distributed RCS/Benjamin Franksen/EPICS Meeting 2007 Hamburg

Experience with a Distributed Revision Control System

Experiences using Darcs: Distributed Development
• easy to give world-wide read-only access via http
• sending patches is extremely light-weight
• greatly reduces the entry barrier to contribution

• if you don't (yet?) want to contribute
- locally recording changes insulates against upgrades
- easily removed or re-added
- share patches with collaborators, bypassing main development trunk

• EPICS development (both core and support modules) could greatly
benefit from such an RCS: more contributions, less maintenance

Distributed RCS/Benjamin Franksen/EPICS Meeting 2007 Hamburg

Experience with a Distributed Revision Control System

Distributed RCS/Benjamin Franksen/EPICS Meeting 2007 Hamburg

Experience with a Distributed Revision Control System

The Darc Side of Darcs
conversion from/to other RCS could be better

• available tools: cvs2darcs (perl script) and tailor (python)
• have seen situations where both both have problems to correctly

convert a CVS repo w/o manual intervention

still has a number of serious bugs

• known situations where darcs crashes and leaves the repository in a
bad state

• we recently encountered one of these (found a way to fix our repos, but
tedious)

• one safe-guard is to record pending changes into a dummy patch prior
to pulling e.g. from the central repo

Distributed RCS/Benjamin Franksen/EPICS Meeting 2007 Hamburg

Experience with a Distributed Revision Control System

The Darc Side of Darcs
sometimes 'hangs forever'

• merge algorithm in certain cases exhibits exponential blowup
=> extremely long running times (hours and days)

• currently being worked on with high priority
• circumstances:

- large patches with many conflicts
- particularly so-called doppelgaenger-patches

• avoid by keeping patches small
- also reduces likely-hood of conflicts
- makes later cherry-picking easier

Distributed RCS/Benjamin Franksen/EPICS Meeting 2007 Hamburg

Thank you for listening!

