
RTEMS overview

W. Eric Norum

2006-06-12

Introduction

� RTEMS is a tool designed specifically for real-time embedded
systems

� The RTEMS product is an executive not a full operating system
� It provides a development environment:

– Compilers
– Debuggers
– Support for target hardware

Ancient history

� Developed for U.S. Army missile command beginning in 1988
� Open-source license
� Maintained and commercially supported by OnLine Applications Research
� Written to Real-Time Executive Interface Definition

– VMEBus Industry TradeAssociation (VITA)
– Proposal originally sponsored by Motorola.
– Matched pSOS+ and VMEExec.

� C and ADA bindings
� “Super Core” with various APIs

– RTEMS
– POSIX
– ITRON

� FreeBSD (4.3?) network stack ported to support EPICS

RTEMS Architecture

GUIs

SAPI

Board Support PackageSuperCore

SuperCore CPU
LibCHIP

Hardware

LibCPU

Classic API POSIX Threads µµµµ ITRON API

BSD TCP/IP Stack

POSIX Compliant
Filesystem

RPC/
XDR

TFTP FTPD

PPP

SNMP

Ada95

CORBA

Performance
Monitoring API

Remote
Debugging

HTTPD

DHCP BOOTPICMP

MicroWindows

NanoX

OpenGUI

FLTK

picoTk

Add-on Libraries

Tcl
ncurses

libavl
readline

zlib

OpenPalm

IMFS TARFSGNAT

Classic
API

Bindings

FAT
TFTP
client

NFS
client

RTEMS Supported APIs

� RTEID/ORKID
� POSIX 1003.1b
� ANSI C Standard Library
� ITRON

� Note that some “standards” imply others
– POSIX 1003.1b references ANSI C Library
– EL/IX references POSIX and BSD

Communication and Synchronization Mechanisms

� Classic API Managers
– Semaphores (include mutex functionality)
– Events
– Message Queues
– Signals

� POSIX API Managers
– Semaphores
– Mutexes
– Condition Variables
– Message Queues
– Signals

Memory Allocation

�Classic API Managers
– Partitions
– Regions
– Dual-Ported Memory

�ANSI/ISO C Memory Allocation
– malloc/free

�BSD Network Memory Allocation
– mbufs

Interrupt Processing

� Quick response

� Simplifies user ISRs by allowing high-level language usage

� May alter task execution

� Interrupts disabled for minimal time in services

� Can incorporate board specific vectoring for chained interrupts or PICs

Portability

� Major design goal of RTEMS
� Isolate hardware dependencies
� Developed in a high level language
� Source code availability
� Available on multiple processor families
� Numerous board support packages included
� C, C++, and Ada applications are supported
� Applications port easily to other processors

Processors Supported by RTEMS

� ARM
� Motorola MC680x0
� Motorola MC683xx
� Motorola Coldfire
� PowerPC
� Intel i386 and above
� Intel i960
� MIPS

� OpenCores OR32
� SPARC
� AMD A29K
� Hewlett-Packard PA-RISC
� Hitachi H8
� Hitachi SH
� Texas Instruments C3x
� Texas Instruments C4x

User Extension Points

� Task creation
� Task initiation
� Task restart
� Task deletion
� Context switch
� Task exit
� Fatal errors

� Example – ‘spy’ task CPU usage monitoring

Development Environment

� Based on GNU Tools
– GNU Compiler Collection (C, C++, Ada, Java, Fortran)
– GNU Debugger

� GNU autoconf scripts for configuring RTEMS
� Makefile templates for application software and custom device drivers

– Isolates processor and language dependencies
� OAR is an active member of the free software effort

– Compiler/library changes get folded back into official distributions
� Newlib

RTEMS Task Scheduling

� Priority based (strict)
� Timeslicing
� Round-robin
� Preemption
� Rate Monotonic Scheduling
� Sporadic servers

What those familiar with vxWorks will find missing… ..

� The range of hardware, particularly VME CPUs and PC network
interfaces, for which support exists

� The nice, comfortable, integrated development environment
� The common boot procedure and configuration technique
� The vxWorks shell

– EPICS provides the IOC shell
– Till Straumann has written Cexp, a C expression parser

� The telnet access to the console
– RTEMS version tested with the EPICS IOC shell – needs work

� Dynamic loading
– The Cexp package provides this, too

� The licen$e fee

