
A U.S. Department of Energy
Office of Science Laboratory
Operated by The University of Chicago

Argonne National Laboratory

Office of Science
U.S. Department of Energy

IRMIS: Workshop Summary

IRMIS/Relational Database Workshop
Argonne National Laboratory
D. Dohan, June 16, 2006

IRMIS/RDB Workshop

• Workshop on relational databases in EPICS control s ystems in
general, with focus/emphasis on IRMIS.

• General awareness/acceptance/demand for RDB technol ogy in
EPICS control systems has increased dramatically in the recent
past.

• ~ 40-50 attendees, huge increase since the kickoff meeting, 2005.
• IRMIS now installed/being used/modified in a number of

laboratories, including:
- SNS
- SLAC
- APS
- BESSY
- TRIUMF
- CLS

IRMIS - Introduction
• Integrated Relational Model of Installed Systems

- ‘connection-based’ approach to modeling the accelerator and its
control system
- integrated ‘system’ coverage of software, hardware and cabling

• Collaborative approach
- Goal is to provide re-useable relational database and application

frameworks .
- Inter-laboratory approach strengthens the underlying database

and application structures.
- The ‘EPICS’ model is used throughout – sophisticated high level

tools are developed, but the user always maintains the ability to
look ‘under the hood’

- Site-neutral (and RDBMS agnostic).
- Minimalist approach, locally extensible.

PV Schema
• PV crawler populates RDB (off-line) from ioc st.cmd
information (emulate ioc load process)

� insists on a certain discipline in ioc s/w organizati on

• full (cross-IOC, soft IOC) coverage. Allows viewing system-
wide control system logic, fully macro expanded.

• time stamp - the crawler provides a snapshot of the entire set
of operational EPICS databases and their database d efinitions
each time an IOC reboots.

• channel access clients (more on this later)

• no type-specific code or schema structures

� the crawler ‘discovers’ new record types from the in stalled
EPICS database - no code/schema changes

• invites sending IRMIS query sets to VDCT < nonIOC c entric >
to analyze inter-IOC logic.

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

5EPICS Collaboration Meeting, June 12, 2006

Philosophy

• Integrate IRMISBase data with SNS data

• Use the XAL framework whose look and
feel most SNS users are familiar with

• Simple RDB interaction through POJOs
and database views to adapt IRMIS to SNS

• Tailor functions to SNS users

• But make UI configurable for anyone

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

6EPICS Collaboration Meeting, June 12, 2006

Map Links

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

7EPICS Collaboration Meeting, June 12, 2006

Probe multiple PV’s

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

8EPICS Collaboration Meeting, June 12, 2006

Export to .db file

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

9EPICS Collaboration Meeting, June 12, 2006

ROCS: Sources of Data

• Data are stored in RDB
− SNS Oracle database

• Ways to add data to SNS RDB:
− IRMIS Crawler
− JERI (online editable reports system)
− Single task crawler type programs
− Online editable reports (ROCS)
− XAL Framework
− Spreadsheets loaded by SSLoader.java
− Manual loads and updates

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

10EPICS Collaboration Meeting, June 12, 2006

Example 1: IOC Configuration Details

• Purpose:
− Provide IOC configuration information in fast to ac cess and

easy to analyze form

• Data source:
− Startup.cmd, bootline, st, iocInfo files, db and dbd files

• Saving data to Oracle:
− IRMIS crawler
http://ics-web1.sns.ornl.gov:1982/reports2

cmd, db,
dbd files SNS RDB (Oracle) ROCS: IOC Configuration

Details report at Control
Systems website

IRMIS
Crawler IRMIS RDB

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

11EPICS Collaboration Meeting, June 12, 2006

Example 2: IOC Alarm Logs

• Purpose:
− provide alarm info in such a form that is easy to a ccess and

convenient to analyze

• Data source:
− The latest alarm log files from EPICS alh

• Saving data to Oracle:
− FromAlarmLogToOracle.java

The latest
alarm log
files from
EPICS alh

SNS Oracle DB
ROCS: IOC Alarm Log
report at Control Systems
website

Crawler type
java program

FromAlarmLog
ToOracle.java

How to define an AOI...

...Let’s start with LINAC RF Switching Control System example

The PLC had Touch Screens
with built-in logic for User
Interface Control

First there was a PLC for
controlling the RF Switches

MEDM displays monitored RF
switch positions

ACIS

LLRF
Trigger & Interlock

System

LINAC Interlock
L1, L2 and L3 PLCs

The PLC communicated
with other “AOIs”

Then along came request for remote
control from the Main Control Room –
MEDM displays with built-in logic

How do we
store all this
information in

an AOI
database?

Example AOI Marked Up st.cmd File

Absorber Databases
#dbLoadRecords ("vpApp/absDb/H2O-xx-FlowPres.db", "SECTOR=05, NODE=18")
#dbLoadRecords ("vpApp/absDb/H2O-xx-FlowPres.db", "SECTOR=06, NODE=20")

#<aoi aoi_name="aoi_sr_absorber_water_s5">

dbLoadRecords ("vpApp/absDb/DL250stat.db","name=S05:H20:PLC,addr=L1 N20 P1 S1")
dbLoadRecords ("vpApp/absDb/PlcVersionInfo.db","name=S5VP:H20:PLC,addr=L1 N20 P1 S1")
dbLoadRecords ("vpApp/absDb/H2O-xx-FlowPresOdd.db","SECTOR=05,addr=L1 N20 P1 S1")
dbLoadRecords ("vpApp/absDb/H2O-xx-FlowPresEven.db","SECTOR=06,addr=L1 N20 P1 S1")
dbLoadRecords ("vpApp/absDb/H2O-SECTOR-PW-SH-Temp.db", "SECTOR=06")

#</aoi>

dbLoadRecords ("vpApp/facilitiesDb/Ambient-SECTOR-Temp.db", "SECTOR=05, NODE=18")
dbLoadRecords ("vpApp/facilitiesDb/Ambient-SECTOR-Temp.db", "SECTOR=06, NODE=20")

AOI

Viewer

PV Clients:
SLAC Workshop 2005 summary (excerpt)

• Work breakdown – CA client crawlers
- adl,alh – Janet Anderson, APS
- SDDS – APS
- EDL – J. Sinclair
- SNC – R. Chestnut
- CA archiver – SLAC
- Channel Watcher – M. Zelazny
- BURT s/r – T. Birke
- CDEV – T. Birke
- XAL – J.Patton
- CA Security – APS

What was done and whyWhat was done and why
• Modified pv_crawler.pl in a modular manner.

– Didn’t write a secondary crawler.
– Needed to traverse boot tree to see current snapshot.
– Needed to look into seq.o files and do macro substitution

• Requirements for DB viewing
– For a given pv, which sequences use it and on which ioc’s.
– For a given ioc, which pv are used in sequences.
– For a given sequence.o file, what pv’s are used.

Source files deliveredSource files delivered

• src/crawlers/pv/pv_crawler.pl
– Added SEQ logic to main loop

• src/crawlers/pv/PVCrawlerParser.pm
– Two new subroutines

• src/crawlers/pv/SEQCrawlerDBLayer.pm
– New module.

• src/crawlers/pv/README_SEQ
• src/crawlers/pv/README_SEQ_USE_CASES

IRMIS @ SLAC Summary

• PV part of the schema only so far
• Running:

- PV Crawler since late 2005
- SEQ crawler
- ALH crawler

• Use PV Viewer and batch reporting
• Plans for client config data and UI

IRMIS Uses so far

• PV Viewer for ad hoc database queries

• PV Crawler reports EPICS database and template
errors (-:

• Data source for EPICS PV names for SLAC legacy
control system
- formerly dbLoadTemplate and dbReport on

hardcoded lists of template files

View Child Equipments

CIDB is…

• A database-based application that
- Enables us to track the control system hardware (stock, installations)
- Embeds the working practices related to controls hardware distribution and

maintenance (transparency)
- Tries to make our (controls group HW&SW, system developers, other

related groups) lives easier
- It is limited to the hardware handling, but is able to provide configuration

information (installation hierarchy)
• Note: I am not a database expert; I will not show a ny table diagrams or

other details in this talk. However, details can be obtained from the
developers if wanted.

System view

System contents (VME crate)
-nonhierarchical installations
are also supported

Request part:
-select part type from a list
-add count & date needed

Status & future

• Core functions
- In use since February
- CIDB has already much improved our view of the status, and enabled to

share and distribute the work better
• Integrate hardware testing

- Work in progress
• Include purchasing information

- Important for ordering, repairs, budgeting, etc.
- In progress, planned by end of June

• New applications/modules
- (diagnostics) component calibration management

• Connection to / integration with IRMIS?
- The functionality is largely complementary

Components: IRMIS approach

• Minimize the abstraction/modeling in the definition of ‘components’
• Thus, instead of assigning a ‘behavior’ to a magnet (“sextupole

corrector in the LEBT”), in IRMIS a magnet is simpl y a component that
converts a DC electric current into a magnetic fiel d. (It is
characterized by the number of ports it has, rather than what it does
to the beam.)

• The goal is to have component definitions that are universal in nature.
• "Make everything as simple as possible, but not sim pler."

Component Connections
•The IRMIS schema relates components by how they are interconnected:

• physically (housing hierarchy)

• logically (control hierarhy)

• power grid (power hierarchy)

• Each relationship type is hierarchical in nature (e ach child has a unique parent in each
hierarchy). The hierarchies are modeled as node/ed ge graphs (DAGs).

component

component_type_id

component type

name
description
form factor
manufacturer
function

is a

component_rel_type

rel_name

component_rel

parent_cmpnt_id
child_cmpnt_id
logical_order
logical_desc
component_rel_type_id

Ports and Cables

component

component_type_id

component type

name
description
form factor
manufacturer
function

is a

component_rel

parent_cmpnt_id
child_cmpnt_id
logical_order
logical_desc
component_rel_type_id

port

cmpnt_id
port_name
port_order

pin

pin_usage
signal_name
port_id

cable

color
label
port_a_id
port_b_id
pint_detail
dest_desc

conductor

cable_id
pin_a_id
pin_b_id

27

IRMIS Out of the Box

� Database Access
– DDL (SQL scripts for creating IRMIS schema)

• MySQL
• Oracle

– Java database access layer (POJO – DAO – Hibernate)
– Perl database access layer (minor extension of Perl-DBI)
– PHP database access layer (simple OO layer on top of PHP-mysql)
– Perl Crawlers

• PV (and SEQ)
• ADL
• ALH
• IOCSR
• SDDS
• Network (switch connectivity)

28

IRMIS Out of the Box

� Applications
– IDT – IRMIS DeskTop

• Java/Swing application containing
– idt::ioc, idt::pv, idt::component, idt::component-type, idt::cable,

idt::admin
• Java WebStart support provided

– Demo PHP PV Viewer
– Demo CFW Java application

31

One Relationship still escapes us … PV-to-Signal

Which field signal does
this Process Variable

control?

Which PV(s) monitors
this field signal?

For ongoing operation and maintenance of a large
accelerator facility, it is imperative to know the
relationship between Process Variables and field

signals. This relationship should be traceable in either
direction.

32

Can this relationship be “discovered” in EPICS?

Binary In Record
NAME: “Pump On”
DTYP: AVME9440
INP: #C0 S3 @
RVAL:
VAL:

DSET Index Table

BI AVME9440 devBiAvme9440 VME

AVME 9440 Device Support
Struct {
 read_bi()
} devBiAvme9440

STATIC long read_bi(pbi)
Struct biRecord *pbi;
{
 <retrieve specified data from device>
 <place data in field of record>
}

1

2

3

45

Driver Support
(possibly)

Records (PVs)
specify the “device
type” through the
configurable field
DTYP. Additional

“device specific” info
is identified in

INP/OUT fields.

Although certain specifics about the field signal location can be heuristically
determined, there are no hard rules for mapping between INP/OUT and an actual

device port. Due to the diverse styles of device support authorship, the PV-to-signal
relationship cannot be traced with existing EPICS facilities.

33

The Cloud

34

Dispersing the Cloud

• The missing link to allow fully automatic discovery of the relationship between a Process
Variable and a field signal occurs at the device support layer (unique code for each device
type).

• If an additional lookup table (link_rule table) were available that identified the relationship
between the INP/OUT specifiers and the device port (or parameter), the relationship could
be “mined” by an intelligent “crawler” script. Such a table would look similar to the one
below:

DSET
Routine
Name

Expected INP/OUT
Structure

Port
Identifier

Token

Device Port
(Connector)

Device
Signal Name

devBiAvme9440 #C_ S_ @< string> S0 P1 INP00
devBiAvme9440 #C_ S_ @< string> S1 P1 INP01
devBiAvme9440 #C_ S_ @< string> S2 P1 INP02
devBiAvme9440 #C_ S_ @< string> S3 P1 INP02
devAiDg535 #L_ A_ @ @2 A_Out A_Out
devAiDg535 #L_ A_ @ @3 B_Out B_Out
devAiDg535 #L_ A_ @ @4 C_Out C_Out
devAiDg535 #L_ A_ @ @5 D_Out D_Out

35

IRMIS - future

� signal tracing
– concept of the component as a ‘signal transformer’

� fault diagnosis
– trace failed PV to the suspect component/port
– locate failed component control path item

� integration with VDCT
� ‘prescriptive’ applications - ioc configuration, etc.
� integration with CSS
� long wish list

