
GPIB Device Control with COSYLAB microIOC

• COSYLAB microIOC

• Development for microIOC with SDK

• GPIB device control

• microIOCs in SLAC

• Things learned

Jingchen Zhou at SLAC

COSYLAB microIOC

• microIOC
– A compact embedded computer for control and monitoring of

devices via network
– A bridge integrating devices with EPICS based control system

• devices connected to microIOC via serial, GPIB or other ports
• microIOC (EPICS applications run) available to control system via

Ethernet network

• Key features
– Extensible I/O: Serial (RS232/RS485), GPIB and other interfaces
– Powered by Debian Linux
– EPICS enabled
– SDK for microIOC(develop/build/deploy/console)
– Compact Flash (CF), no disk, no fan

Front side: COM1, LAN1 (Static IP) and LAN2 (DHCP), CF (Linux and EPICS)

Rear side: GPIB port (or Serial) , Controlled Line Power OUT1 & 2 (special hard
reset for GPIB devices)

COSYLAB microIOC

microIOC Software Development Kit (SDK)

•SDK comes with microIOC, Linux based
•Development platform for microIOC
•SDK contains

•all the libraries (EPICS, Sequencer, ASYN
and etc.), compilers and tools required to
create/build EPICS control solutions

•Everything (!!!) within the SDK
•login to SDK with uioc-sdk
•create a new EPICS project with e.g.
makeBaseApp.pl and make
•set UIOC_TARGET to microIOC’s IP
•uioc-deploy(to package all the required files
constituting a solution, distribute over to
microIOC , unpack and restart the IOC)
•uioc-consoleto access the IOC console

•Backup deployment (just take new CF to
microIOC)

A GPIB Application

• Create a GPIB device support module
– makeSupport.pl -t devGpib uiocGPIB
– using ASYN driver
– COMMAND, QUERY, RESPONSE supported

• Create a GPIB IOC application to control DVM
– makeBaseApp.pl -t ioc dvm; makeBaseApp.pl -i -t ioc dvm
– in dvmInclude.dbd

include "drvLinuxGpib.dbd”
include "devuiocGPIB.dbd“
include "uIOCLcdSupport.dbd"

– setup for GPIB port (in st.cmd)
GpibBoardDriverConfig("L0",1,0,3,0)

– define flat database
– sequence program: to read, monitor, and reset automatically (power-cycle

and reinitialize)
• Reference: “How to create EPICS device support for a simple serial or

GPIB device” by Eric Norum

microIOC Setup

•Development platform
•Debian Linux recommended
•RHEL3 tested in SLAC
•sudo needed to allow login to SDK
•dual homed: one on public network, one on
production network

•SDK and setup backed up to CVS
•IOC Console access with EPICS Extension
iocConsole

•no sudo required
•access to microIOC host (via terminal server)
•access to the soft IOC
(via telnet microIOC port)
•access from anywhere

•Production and Development microIOCs
•SDK can access both
•DHCP used
•Quick test/fix, and easy failover (swap of CF)

Prod microIOC

Dev microIOC
Development

platform

LB60
HB60

TLB60
THB60

GPIB

GPIB

iocConsole

PUB

PROD

microIOCs in SLAC

•Two microIOCs for PEPII Bunch Injection
GPIB controls

•To read the DCCT (total ring current)
via two Keithley Multimeters (DVM)
one for LER, one for HER

•One microIOC for PROD, one for DEV
(backup)

•Two more microIOCs coming
•Two PCs (DOS) which communicate with the
Control Room Knob boxes via RS485

Things Learned

• Easy integration of devices with the rest of EPICS control system
• Easy development and deployment with SDK
• Quick failover
• Robust!!!
• Pitfalls

– only one soft IOC per microIOC supported
• multiple IOCs can disable SDK and hang micoIOC
• login microIOC to stop and remove unwanted soft IOC manually

– hard to integrate with the rest of development/release environment
– cumbersome in EPICS upgrade

• upgrading or adding module in SDK: COSYLAB
• upgrading in microIOC sometimes manually, can be out of sync

• Thanks to Gaspar Jansa and Klemen Zagar at COSYLAB for their
excellent support!

