
Argonne National Laboratory is managed by
The University of Chicago for the U.S. Department of Energy

ICALEPCS 2005: EPICS Workshop
EPICS V4 : Runtime Database

Marty Kraimer and Andrew Johnson

The submitted manuscript has been created by the
University of Chicago as Operator of Argonne
National Laboratory (“Argonne”) under Contract
No. W-31-109-ENG-38 with the U.S. Department
of Energy. The U.S. Government retains for itself,
and others act-ing on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in
said article to reproduce, prepare derivative works,
dis-tribute copies to the public, and perform
publicly and display publicly, by or on behalf of
the Government.

2ICALEPCS 2005: EPICS Workshop: EPICS V4 Database

EPICS V4 Database – Summary
Of New Features

WARNING:
– The design for the V4 Database is not complete
– The ideas presented in this talk are subject to modification

Database Definition Files and Record Instance Definitions
– struct is a valid field type
– Array fields are allowed
– String is arbitrary length UFT-8

Better Support for Data Acquisition
– New Link Semantics - All can request

• Process
• Wait until linked record completes
• Link can block or allow other processing while waiting

– While active a record can be processed and post monitors
db_post_event no longer exists – Database Access handles monitors
Lock Sets replaced by per-record lock

3ICALEPCS 2005: EPICS Workshop: EPICS V4 Database

EPICS V4 – Database Definition:
Field Types

Primitive types
– boolean, octet, int16, int32, int64, float32, float64

• boolean is true,false but no conversion to/from integer
• octet is 8-bit byte but no conversion to/from integer

string
– Array of UTF-8 encoded characters

Array field
– 1-dimensional arrays of all field types are allowed
– Multidimensional arrays may be restricted (only int or float?)

enum – Like V3 but references a field that is an array of string
menu – Like V3
struct

– struct is a dbd type and a field of a record can be a struct
link

4ICALEPCS 2005: EPICS Workshop: EPICS V4 Database

Example Record Definition:
CalcRecord

From dbCommon.dbd
struct(InputLinkData) {

field(pvname,string)
field(process,boolean)
field(wait,boolean)
field(block,boolean)
field(inheritSeverity,boolean)

}
struct(MonitorLinkData) {

field(pvname,string)
field(process,boolean)
field(inheritSeverity,boolean)

}
struct(ProcessLinkData) {

...
}
struct(OutputLinkData) {

...
}

Features
– Options for processing and waiting
– Option to block

calcRecord.dbd
Include “dbCommon.dbd”
struct(CalcInpLink) {

field(link, link(in,interface(LinkFloat64)))
field(value,float64)

}
record(CalcRecord) extends RecordCommon {

field(inp,array(struct(CalcInpLink)[]))
field(units,string)
field(displayLimit,struct(DisplayLimit))
...
}

}

Feature
– arbitrary number of input links

5ICALEPCS 2005: EPICS Workshop: EPICS V4 Database

Example Record Definition:
MbbiRecord

The following describes a state
struct(MbbiState) {

field(name,string)
field(value,array(octet[]))
field (severity,menu(menuAlarmSevr))

}

Part of the record definition
record(MbbiRecord) extends RecordCommon {

field(state, array(struct(MbbiState)[]))
...

}

Features
– Octet[] allows a multiple of 8 bits. For

example a 128-bit Digital I/O module
– Arbitrary number of states are allowed

MbbiState describes
– name – the name for the state
– value – bit pattern as array of

octets
– severity

Record definition describes
– state – an array of mbbiState
– ...

6ICALEPCS 2005: EPICS Workshop: EPICS V4 Database

Record Instance Examples
Counter Record – count 0 to 10
CalcRecord counter = {

scan = “.1 second”;
calc = “(a<10)?(a+1):0”;
inp = [1] {

{link = monitorLink(LinkFloat64)
{pvname=counter}

}
};

}

Compute Max of recordA, recordB
CalcRecord computeMax = {

calc = “(a>b)?a:b”;
inp = [2] {

{link = monitorLink(LinkFloat64)
{pvname=recordA;process=yes}

},
{link = monitorLink(LinkFloat64)

{pvname=recordB;process=yes}
}

}
}

mbbi Record 16 bit DAC, 3 states
MbbiRecord dac16 = {

state = [3] {
{name = “state1”; value = octet [2]{0x00,0x01}},
{name = “state2”; octet[2]{0x00,0x02}},
{name=“state3”;octet[2]{0x00,0x04}}

}
...

}

7ICALEPCS 2005: EPICS Workshop: EPICS V4 Database

V4 Links
Monitor Link Data - Input

– pvname
– process – on new value
– inheritSeverity

Input Link Data - NOT monitored
– pvname
– process
– Wait
– block
– inheritSeverity

Output Link Data
– pvname
– process
– Wait
– block
– inheritSeverity

Process Link Data
Replaces V3 fwd link

– pvname
– Wait
– block

8ICALEPCS 2005: EPICS Workshop: EPICS V4 Database

V4 Link Semantics
pvname – Process Variable Name
process

– For MonitorLink it means to process record containing link
– For others it means to request that linked record be processed

wait – Wait until record completes processing before link completion
– If process false then wait until next time record processes
– For input wait BEFORE getting value
– For output wait after putting value
– For process wait until process completion

block
– If yes then do no other record processsing until this link completes
– If no then allow other record processing

9ICALEPCS 2005: EPICS Workshop: EPICS V4 Database

Data Acquisition Link Example
Scan a sample
Repeat the following until done

– Move motor A to new position: record incA does this
– Move motor B to new position: record incB does this
– Wait until A and B are at new position
– Take a sample; record getSample does this
– NOTE: incA, incB, and getSample may all be a set of records

Rules
– Motors A and B can be moved together
– Don't start a new move until Channel Access Client has received data

Approach
– The Channel Access Client will ask to go to new position
– It will wait for record to complete, read sample, and then repeat

10ICALEPCS 2005: EPICS Workshop: EPICS V4 Database

Some V4 Features
RecordCommon replaces dbCommon

– RecordCommon has associated record support
– V3 FLNK field replaced by array of processLinks

For our example we could use any record type
– Just assume a record type void which has only RecordCommon

11ICALEPCS 2005: EPICS Workshop: EPICS V4 Database

Record Type Void For Data
Acquisition

Assume that incA, incB, and getSample exist
The following does the data acquisition:
void collectSample={

processLink=[3] {
{pvname = “incA”; wait=true; block=false},
{pvname= “incB”; wait=true; block = true},
{pvname= “getSample”; wait=true; block=true}

}
}

The following occurs
– The client issues a processWait request to record collectSample
– collectSample requests that both incA and incB process; it waits
– collectSample requests that getSample processes; it waits
– collectSample completes
– client receives completion notification, reads sample, and starts again

12ICALEPCS 2005: EPICS Workshop: EPICS V4 Database

V4 Record Processing Semantics
V3 record processing semantics did not work well for data acquisition

– New V4 Link semantics help
– SynApps (Xray beamline software) created new record types

• Scan, Motor, etc.
• Set PACT false but do NOT call recGblFwdLink
• Thus can be processed again even though they are not done
• Can issue db_post_event so that current position can be monitored
• When really done call recGblFwdLink
• This behavior came as a big suprise to iocCore developers

V4 provides semantics that allow this behavior
– Previous example showed new link behavior
– Although not explained in this talk, the V4 processing semantics allow

monitors to be posted
• While a record is in state processActive
• At the completion of record processing

13ICALEPCS 2005: EPICS Workshop: EPICS V4 Database

Posting Monitors
Database Access does all posting of monitors itself

– It posts monitors when record support returns processActive
– It posts monitors when RecordCommon returns processDone
– Thus monitors are posted when state is processActive or when the

record completes processing
How can Database Access handle monitors itself?

– Short answer is that database fields can ONLY be modified via an
interface that is implemented by Database Access

14ICALEPCS 2005: EPICS Workshop: EPICS V4 Database

Lock Sets Replaced By Per Record
Lock

V3 implemented lock sets
– Allowed dbProcess to be called recursively

• Process passive database links implemented via recursion
– Prevented deadly embrace
– For synchronous links fields can not be modified by Channel Access

while records in lock set are being modified
• For asynchronous records this is no longer true

V4 queues requests rather than making recursive call to dbProcess in order
to process linked records

– Prevents stack overflow
– Removes many complications of lock sets

15ICALEPCS 2005: EPICS Workshop: EPICS V4 Database

V4 Record Processing:
Performance Issues

All access to database fields is via interface
– Example:

interface DbfOctet extends Dbf {
int16 get();
void put(int16 val);

}

– Storage Overhead
– Runtime Overhead

Queue Request instead of recursive call to dbProcess
– Queue Request overhead
– Context Switch overhead

16ICALEPCS 2005: EPICS Workshop: EPICS V4 Database

Accessing Database Via Interface:
Storage Overhead

Storage is increased for fields that exist
– Database Access keeps private info for every field

BUT many fewer fields will exist
– RecordCommon has fewer fields than the V3 dbCommon

• ProcessLink, which replaces the V3 FLNK is an array of links. It can
be an empty array

– CalcRecord has array of struct(CalcInputLink).
• V3 always had storage for 16 links and associated info
• V4 will only allocate storage for the number of links used

– Several other record types will have major savings, e.g. mbbi, mbbo
– New link semantics will require fewer record instances

17ICALEPCS 2005: EPICS Workshop: EPICS V4 Database

Accessing Database Via Interface:
Runtime Overhead

Overhead for primitive types is extra level of indirection
– For gets it is just overhead
– For puts posting monitors makes extra level of indirection insignificant

Overhead for other types more severe
– Arrays biggest problem

• Record or device support can provide storage and can share storage
between record types for demanding applications

Will impose more discipline on record and device support
– Don't use database to store private info
– Set monitors so that it is not necessary to access field everytime record

processes
– Reward is not getting involved with monitors, etc.

Data in IOC records is owned and controlled by database access, not by
record and device support

18ICALEPCS 2005: EPICS Workshop: EPICS V4 Database

Record Processing: Overhead of
Queue Request

Issuing a queue request instead of recursive call to dbProcess has more
overhead

– Queue request itself
– Possible context switch

Queue requests often not necessary
– Using MonitorLink for input causes no queue request
– Synchronous device support requires no queue request
– InputLink and OutputLink with process and wait false require no queue

request
Many queue requests are because of new desired features of V4
Optimization for context switch

– When a queue request is issued, the scan thread will process this
request as soon as the record issuing the request returns

19ICALEPCS 2005: EPICS Workshop: EPICS V4 Database

WIKI Pages
More Details are available in wiki pages

– They are available via the main EPICS site
http://www.aps.anl.gov/epics/

– The core developer wiki pages are available via
http://www.aps.anl.gov/epics/wiki/index.php/Core_Developer_Pages

The current wikis of interest are those under the headings:
– V4 Database Definition
– V4 Database Runtime

