
Accelerator Systems Division ORNL

Using Data Access, First Impressions

Kay Kasemir

October 2005

European EPICS Meeting 2005

Accelerator Systems Division ORNL2

Disclaimer

• This is about work in progress.
The DataAccess interface as presented in here has
not been released, nor is it in its final format.
DataAccess is available as a CVS Snapshot on

http://www.aps.anl.gov/epics
and it’s neither guaranteed to compile
nor to do anything useful, yet.

Accelerator Systems Division ORNL3

V4, Channel Access, Central Role of Data Access

• A significant portion of the V4 novelties is in Channel Access
– More user control over subscriptions:

Per-client rate, max rate, custom events, …
– Custom data containers:

No longer limited to predefined list of DBR_… types.
• “DataAccess” is proposal for interfacing these arbitrary data containers

between data sources and destinations.
• Sources include

– Program “writing” data via the CA client library.
– CA client library callback presenting the result of a “read” request.
– Program (server tool) serving data via the CA server library.

• Destinations may reside in
– CA client lib. Trying to “write” the data.
– User code parsing the “read” result.
– CA server library reading the server tool’s data.

• Unclear right now if other EPICS APIs like record or device support could also
use “DataAccess”.

Accelerator Systems Division ORNL4

Example Source and Destination Data

• struct source
{
time timestamp;
double value;
string units;
enum alarm_severity;
struct color
{
int red, green, blue;

}
int pulse_type;

}

• Properties timestamp, value, …
• Types time, double, string, …

• struct destination
{
time timestamp;
float value;
string units;
enum alarm_severity;
int color_table_idx;

}

• Properties may differ
• Types for matching properties

may differ

Accelerator Systems Division ORNL5

Data Access Ideas

• Interface
– Does not hold any data (as e.g. ‘GDD’ used to do)

• Generic
– User should not have to arrange data in any special way; there is

no common “EpicsDataObject” from which one must derive.
– Instead add implementation of DataAccess “PropertyCatalog”

interface.
• Properties

– Defined as strings/names “value”, “units”, …,
converted into numeric IDs for performance.

– Need mutual agreement on names.
No magic mapping from e.g. “color” to “color_table_index”.

• Types
– Data Access tries to convert double into float etc.

Need to define if string “42.5 Apples” ought to convert into int 42.

Accelerator Systems Division ORNL6

DataAccess PropertyCatalog

• The one and only interface one has to implement
and understand for using DataAccess.

• Designed in C++, but ideas should work in Java, Perl, … as well.
• Source and destination must both implement PropertyCatalog
• Given

PropertyCatalog &src, &dest;
one can do this:

assign(dest, src);
to copy all matching properties from source to destination, converting
types as necessary.

• Interface PropertyCatalog:
status traverse (propertyViewer &v);

bool find (propertyId & id, propertyViewer & v);

Accelerator Systems Division ORNL7

PropertyCatalog::traverse

• DataAccess will invoke traverse to visit the data.
Need to ‘reveal’ all properties via their ID.

static const propertyId value_id(“value”);
…
status traverse (propertyViewer &v)
{

v.reveal(value_id, source.value);
…
return OK;

}

• There are actually variants of traverse to support
– Read-only, viewing traversal
– Writing traversal
– Traversal of only property & type information, no data.

Accelerator Systems Division ORNL8

PropertyCatalog::find

• Used by callers to locate a specific property without traversing the
whole PropertyCatalog

bool find (propertyId &id, propertyViewer &v)
{

if (id == value_id)
{ v.reveal(value_id, source.value);

return true;
}
else if (id == …
…
return false; /* unknown property */

}

• There is a “locator” helper class for registering reveal methods,
keeping them in a hash based on the property ID, to avoid the chain of
“if (id == …) …”.

Accelerator Systems Division ORNL9

Property Viewers

• The find() and traverse() methods reveal data items, and the Property
Viewer needs to handle every data type:

class propertyViewer
{

virtual void reveal(propertyId &, double &);
virtual void reveal(propertyId &, int &);
…

}

• There is a …Viewer for static data, …Manipulator for write access,
and maybe a new variant for type information

Accelerator Systems Division ORNL10

(My) Misconception

• Given a propertyCatalog *pc from e.g. a CA read response,
there is no querying/pulling interface like this:

double value = pc->getProperty(“value”)->toDouble();
cout << “The value is “ << value << endl;

• Also no iterating interface like this:
foreach property (pc->getProperties())
{

print property->getName(), “ is “,
property->toString();

}

• Instead, invoking
pc->find(value_id, my_viewer);

or
pc->traverse(my_viewer);

will transfer the program flow to data access, which will then call the reveal
methods inside “my_viewer” at its discretion.

Accelerator Systems Division ORNL11

What already works

• Possible to define PropertyCatalogs for structs of double, int, ..
• Assignment of property catalogs to each other to matching

properties is trivial.
propertyCatalog *source, *dest;
assign(*dest, *source);

• One can write a data-copying viewer to be used like this:
// All the viewer’s reveal() methods
// copy data into instance variable “double data”
DoubleViewer v;
pc->find(value_id, v);
cout << “The value is “ << v.data << endl;

to effectively get a “pulling” interface for known properties.

Accelerator Systems Division ORNL12

What I didn’t accomplish

• Strings
– Accessed via “stringSegment”,

defined in “daString.h” and “daStream.h”,
but the latter doesn’t get installed?

• Hierarchy
– Assume the source catalog has more than one “color”:

source.display.color
source.beam.color

– With a “pulling” interface, one could pick a specific one like this:
pc->getProperty(“display”)

->getProperty(“color”)
->getProperty(“red”)->toInt();

– Unclear which of the “color” properties assign() would pick, so
one needs to implement a propertyViewer with a state machine
that tracks the callback path.

Accelerator Systems Division ORNL13

What I didn’t accomplish..

• Type Info
– Remember that if a PropertyCatalog containing a “double value” is

subjected to find() or traverse(), the propertyViewer’s
reveal(propertyId &value_id, double &data);

is invoked.
– This currently requires an actual instance of the data.
– To learn if there is a ‘value’ property and what it’s type is,

one needs to invoke
find(value_id, viewer);

and then take notes inside the viewer which overloaded reveal was
called. Doable, but necessary?

Accelerator Systems Division ORNL14

Issues under Discussion

• Types
– Is this the supported list?

Octet, bool, int16, 32, 64, float32, 64, string, enum, time.
– Structures and arrays of the above.
– Support unsigned integers?

• String and array interfaces
– Currently written in order to support segmented storage.

Consequence:
Cannot access string as (const char *),
only allowing char-by-char callbacks getChar/putChar.
Andrew Johnson proposes a “StringReader/Writer” API that
is closer to the familiar std::string, MFC::CStr, …

