
Next Generation
CA Client API
Next Generation
CA Client API

Jeff Hill

SummarySummary

Functional requirement highlights
Our design
Example client applications

API Functional Requirements –
Backwards Compatibility
API Functional Requirements –
Backwards Compatibility

Backwards compatible client API

API Functional Requirements –
Interface Design
API Functional Requirements –
Interface Design

Eliminate maximum data size configuration
parameters
Unified client and server programming interfaces

API Functional Requirements – Data
Packaging
API Functional Requirements – Data
Packaging

User extensible meta-data
Channel properties
Event properties

Multi-dimensional arrays
Unlimited length strings

API Functional Requirements –
Data Acquisition
API Functional Requirements –
Data Acquisition

Application extensible event set
Server posts event “arcDown”

– Application specific multi-property capsule supplied with
each post

Within an IOC hopefully this originates both from the database
and device support

Client subscribes for event “arcDown”
– Specifies subset of properties to be copied from the

capsule posted with the event

API Functional Requirements –
Data acquisition
API Functional Requirements –
Data acquisition

Advanced subscription update payload
composition

Subset of available properties
– Decoupled Client and Server data spaces

Property selected from event payload
– Mutex synchronized

Property selected from an unrelated channel
– Scheduling priority synchronized

API Functional Requirements –
Data acquisition
API Functional Requirements –
Data acquisition

Advanced subscription update trigger criteria
Each event has one or more triggers

– Trigger set is client and server extendable
Client and server need only agree on the name, purpose, and
minimum property set

– Triggering events from that channel
Must be present set, must not be present set

API Functional Requirements –
Data acquisition
API Functional Requirements –
Data acquisition

Advanced subscription update trigger criteria
Periodic

– Maximum, minimum, fixed period
Arbitrary channel property expressions

– % change, absolute value, relative value
– Property match criteria

Multiple properties
Event properties match criteria
Channel properties match criteria

Possibly properties of some other channel
Event queue length

API Functional Requirements –
Database mirroring
API Functional Requirements –
Database mirroring

Channel mirror event
Event payload has only the properties that have
changed in it
Subscription callback passes in only the properties
that have changed
Implementation issues need to be better understood

API Functional Requirements –
Intelligent instruments
API Functional Requirements –
Intelligent instruments

Message passing
Device defines multi-property request/response
interfaces

– Command completion synchronization
– Multi-property atomic reads and writes

Hypothetically crossing record boundaries

Event synchronized requests
Gets, puts, or message interaction synchronized to
events in the event queue

API Functional Requirements –
Name Resolution
API Functional Requirements –
Name Resolution

Name resolution snap-in

Our Design – Data PackagingOur Design – Data Packaging

Eliminate maximum data size configuration
parameters

Must have efficient non-fragmenting memory
management
Therefore, do not preclude non-contiguous storage
of all large data items

– Arrays
– Strings – can be very large
– Containers

Our Design – Data InterfacingOur Design – Data Interfacing

Based on Data Access
What it is

– A minimalist interface and support library to be used
when interfacing data to infrastructure

Communicating proprietary data containers
Transferring between proprietary data containers
Comparing proprietary data containers

What it isn't
– A container to store data in

its only an interface to data

Our Design – Guard ClassesOur Design – Guard Classes

Too much overhead to take and release mutex
lock in every function in the library
This is avoided with guard class

Guard class takes mutex in its constructor
Guard class releases mutex in its destructor

Library interface requires reference to guard
class

One lock / unlock pair amortized over several calls

Interfacing to User Defined Property
Sets
Interfacing to User Defined Property
Sets

Two situations
Property set defined at compile time

– Typical of devices, IOCs, client side tools, site specific
applications

Example: server event queue
– Efficient implementation possible, necessary

Property set unknown at compile time
– Typical of parameter page like client side tools like probe

and the CA gateway

Data Interfacing Example – Compile
Time Knowledge
Data Interfacing Example – Compile
Time Knowledge
class StatsCPU {

public:
void set (const PropertyCatalog &);
void get (PropertyCatalog &) const;

private:
int num; float temp; double load;

template < class VIEWER >
void statsCPU :: propertyFind (

const PropertyId & id, VIEWER & viewer);

template < class VIEWER >
void StatsCPU :: propertyTraverse (

VIEWER & viewer);
};

Data Interfacing Example – Compile
Time Knowledge
Data Interfacing Example – Compile
Time Knowledge

extern PropertyId cpuNumber_p;
extern PropertyId cpuTemp_p;
extern PropertyId cpuLoad_p;

template < class VIEWER >
void StatsCPU :: propertyTraverse (VIEWER & viewer)
{

viewer.reveal (cpuNumber_p, &StatsCPU::num);
viewer.reveal (cpuTemp_p, &StatsCPU::temp);
viewer.reveal (cpuLoad_p, &StatsCPU::load);

}

Data Interfacing Example – Compile
Time Knowledge
Data Interfacing Example – Compile
Time Knowledge

template < class VIEWER >
void statsCPU :: propertyFind (

const PropertyId & id, VIEWER & viewer)
{

if (id == cpuNumber_p)
viewer.reveal (cpuNumber_p, &statsCPU::num);

else if (id == cpuTemp_p)
viewer.reveal (cpuTemp_p, &statsCPU::temp);

else if (id == cpuLoad_p)
viewer.reveal (cpuLoad_p, &statsCPU::load);

}

Data Interfacing Example – Compile
Time Knowledge
Data Interfacing Example – Compile
Time Knowledge

void statsCPU :: set (const PropertyCatalog & in)
{

ObjectCatalog < statsCPU, PropertyManipulator >
catalog (*this);

catalog = in;
}

void statsCPU :: get (PropertyCatalog & out) const
{

ObjectCatalog < statsCPU, PropertyViewer >
catalog (*this);

out = catalog;
}

Data Interfacing Example –
No Compile Time Knowledge
Data Interfacing Example –
No Compile Time Knowledge

void dumpCatalog (ostream & cout, PropertyCatalog & X)
{

PropertyViewerTempl < StreamViewer > viewer (cout);
X.traverse (viewer);

}

void dumpProperty (
ostream & cout, const PropertyId & id, PropertyCatalog & X)

{
PropertyViewerTempl < StreamViewer > viewer (cout);
X.find (id, viewer);

}

template < class T >
inline void StreamViewer :: reveal (

const PropertyId & id, const T & property,
const PropertyCatalog & subordinates = voidCatalog)

{
outStream << id << “ = “ << property;
dumpCatalog (outStream, subordinates);

}

Data Interfacing Example –
EZ CA
Data Interfacing Example –
EZ CA

extern PropertyCatalog & containerX;

PropertyContainer bagOfProperties (containerX);

PropertyContainer::iterator it = bagOfProperties.begin();

while (it != bagOfProperties.end()) {

it->displaySelf ();

}

CA Client ExamplesCA Client Examples

What follows are the lowest level asynchronous
interfaces

High performance clients need
– Callback based interfaces

Asynchronous completion
Primitive type overloaded

– Guard classes allow mutex context to be reused
Over multiple requests
Over multiple callbacks

EZCA
– This is layered above the callback and guard based interfaces

CA Client Example –
Create Channel
CA Client Example –
Create Channel

using namespace ca;

static epicsMutex myMutex;

epicsGuard guard (myMutex);

Channel & chan = myClientContext.createChannel (guard, "fred");

CA Client Example –
Property Catalog Registration
CA Client Example –
Property Catalog Registration

PropertyCatalogRegistration & pcr =
MyContainer::createPropertyCatalogRegistration (guard, myClientContext);

propertyCatalogRegistration & MyContainer::createPropertyCatalogRegistration (
epicsGuard & guard, clientContext & ctx)

{
ClassCatalog < MyContainer, PropertySurveyor > surveyor;
return ctx.createRegistration (guard, surveyor);

}

CA Client Example –
Asynchronous Read Request
CA Client Example –
Asynchronous Read Request

readRequest rr = myChan.createReadRequest (guard, pcr) ;

rr.read (guard, myReadCompletionNotifyInstance);

CA Client Example –
Asynchronous Read Response
CA Client Example –
Asynchronous Read Response

class myReadCompletionNotify public readCompletionNotify {

public:

void success (epicsGuard &, const propertyCatalog & incoming)

{

}

void exception (epicsGuard &, const diagnostic & diag)

{

throw diag;

}

} myReadCompletionNotifyInstance;

