

Steven Banks Control Systems Group

Where Are We?

Where Are We?

Where Are We?

Artist's impression of the Australian Synchrotron

Development being managed by Major Projects Victoria (MPV)

Budget is AU\$207M of which:

- AU\$157M is funded by Victorian State Gov for machine
- AU\$50M is funded from external sources for the beamlines

Commencing operation in March 2007

Facility is on land donated by Monash University (used to be a drive-in movie theatre)

We are 20km from City of Melbourne and 40km from the airport

Building is complete and the project team has been resident since Feb 2005

Two floors of offices around circumference Ground floor is mostly laboratories

Initial suite of 9 experimental beamlines with space for at least 30 in the longer term

Photo taken 15 March 2005

Artist's impression of the Australian Synchrotron building

EPICS

Photo taken 7 September 2005

Accelerator Systems

EPICS

View of Facility from outside my office

Storage Ring Parameters

	and desired to be	ini and	
and the lot	Parameter	Value	111 Martine
	Energy	3 GeV	
	Circumference	216 m	
	Harmonic Number	360	
	Periodicity	14	
	Emittance	15.8 nm	rad
	Tune	Horizontal: 13.3	Vertical: 5.2
	Natural Chromaticity	Horizontal: -30	Vertical: -27
	Horizontal. Damping	3.4 ms	
	Vertical Damping	4.6 ms	· /
	Longitudinal Damping	2.8 ms	. 🥳 🚽
	Dipole Field	1.30 T	
	Momentum Compaction	0.002	
	Energy Loss per Turn	931.6 ke	ev 🦾
Marting Contraction	Energy Spread	0.001	and the second sec
			1

EPICS

Over 100 individual contracts:

EPICS

 Conventional Facilities 	Thiess	Australia
Personnel Safety System	Sage	Australia
 Injection System 	Danfysik (Cosylab, Accel, PPT)	Denmark
Storage Ring Magnets	CMS Alphatec	New Zealand
Pedestals and Girders	Metaltec	Australia
SR Vacuum Chambers	FMB	Germany
 SR RF System 	Toshiba	Japan
SR Magnet Power Supplies	Danfysik (Cosylab) & Alpha Scientific	Denmark, USA
SR Ion Pumps	Gamma Vacuum	USA
 SR Valves 	VAT	Germany
Beam Position Monitors	Instrument Technologies	Slovenia

Status of Facility

- Conventional Facilities
- Personnel Safety System
- Injection System

EPICS

- Storage Ring Magnets
- SR Pedestals and Girders
- SR Vacuum Chambers
- SR RF System
- SR Magnet Power Supplies

Completed in February 2005

Completed in September 2005

Beam from electron gun this week Linac commissioning underway All magnets installed

3 sectors installed Expected completion Feb 2006

Most pedestals and some girders installed

First chamber installed this week Expected completion Mar 2006

Equipment on site and installation commenced Expected completion Mar 2006

Delivery commences this month Expected completion Mar 2006

Control System – Injection System

EPICS

- EPICS 3.14.6
- Sequencer 2.0.7
- Asyn 4-0 Driver

Hardware

- 20 PC104 microIOCs (from Cosylab) for LTB, Booster and BTS
- 1 x86-based computer (from PPT) for Linac
- 6 Siemens S7 PLCs for Equipment Protection

Software

- Debian Linux (from CosyLab)
- Linac software provided by PPT
- Booster software provided by Cosylab

Linac Panorama

EPICS

- EPICS 3.14.6
- Sequencer 2.0.7
- Asyn 4-0 Driver (plan to upgrade to 4-3 soon)

Hardware

- 14 Industrial x86-based computers from Concurrent Computer Corporation
- 14 PC104 microIOCs (from Cosylab) for Magnet Power Supplies
- 2 Toshiba IOCs for RF System
- 98 Libera BPMs (from Instrument Technologies)
- 28 Moxa Serial to Ethernet Converters
- 7 Modicon PLCs running Unity Pro

Software

- RedHawk Linux from Concurrent Computer Corporation (real-time variant of RedHat Enterprise)
- Debian Linux for RF System and BPMs

Storage Ring Magnets

Installation of Storage Ring Vacuum Chamber

EPICS

- EPICS 3.14.6
- Channel Archiver 2.1.8
- Alarm Handler 1.2.16 (ten archive engines)

Hardware

- Variety of dual-screen x86-based computers running Windows XP and RedHat Enterprise Linux
- File Server
- PSS Console
- Maintenance Console (for monitoring network, deploying software, variety of other maintenance applications)

Software

- Delphi 2005 for Operator Interface (see Andrew Starritt's talk for more info)
- MATLAB (Physicists)
- Bitscope Remote Oscilloscope monitoring software

Control Room

SR Control System – Equipment

Magnet Power Supplies

- 1 Dipole PS custom-built by Alpha Scientific (EPICS driver written)
- 308 Quad, Sext and Corrector PS Danfysik System 7000 and 9000 (EPICS IOC software written by Cosylab)
- 4 Kicker PS Design being carried out by Danfysik (EPICS driver planned)

Vacuum Pump/Gauges

- Gamma Multi Pump Controllers (EPICS driver written)
- MKS 937A Gauge Controllers (EPICS driver written)
- MKS Residual Gas Analysers (EPICS driver planned)

Other

- Omega DP470 6-channel Multi-Input Temperature Monitors (EPICS driver written)
- LCW Flow Meters (analog signals into PLCs)
- DCCT for beam current monitoring
- Beam Scrapers

All device drivers written using Asyn driver

We use Moxa boxes for all RS-232 devices

EPICS Courses

- November 2003 Observatory Sciences
- November 2004 Steve Hunt
- Valuable visits from Marty Kraimer/Steve Hunt/Bob Dalesio/Mark Rivers

Database

- Substantial use of template and substitution files (14-fold symmetry of SR)
- Some library templates developed (e.g. set-point/read-back comparison)
- Subroutine record used for beam lifetime calculation
- Asyn driver being used extensively for device drivers

Matlab

Matlab Channel Access (MCA) substantially rewritten and extended

Borland Delphi Development

- Channel Access API developed
- Operator Interface application development framework developed
- Interface to Channel Archiver developed
- Interface to Alarm Handler developed

Control System Team

Who Are We?

EPICS

Richard Farnsworth Steven Banks Mark Bennett Mark Clift Glenn Jackson Bryce Karnaghan Wayne Lewis Wendy Lim Andy Starritt Matthew Tuffin

- Lead Control Systems Engineer
- Control Systems Engineer
- Control Systems Engineer
- Beamline Control Systems Engineer
- Control Systems Engineer
- Control Systems Engineer
- Beamline Control Systems Engineer
- Control Systems Engineer
- Control Systems Engineer
- Technical IT Administrator

Australian Synchrotron

www.synchrotron.vic.gov.au

