RRRRRRRRRRRRRRRRRRRR

o SLS

Loadable driver modules

Building drivers for multiple releases of EPICS
Loading drivers dynamically from startup script




PAUL SCHERRER INSTITUT

o SLS

What's the problem?

B Some facilities use more than one EPICS release
& Historical reasons (“Never touch a running system.”)
¢ Third party code (no sources available)
M Drivers should be bullt for all EPICS releases in parallel

¢ Custom record types and other code as well
¢ The same (latest/best) driver version should be available

M But EPICS build facility is related to one EPICS release
¢ 3$(TOP)/config/RELEASE file (in R3.13)

B Duplicating source code Is error-prone




PAUL SCHERRER INSTITUT

o SLS

How to solve the problem?

B Generic version independent makefile recursively calls EPICS
build facility for all installed releases

B Change name of temporary build directory
¢ old: O.<arch>
¢ new: O.<release> <arch>

B Generic makefile can do even more:
¢ find out what to compile/install

¢ build a loadable library from it
< install driver library and dbd with version handling




PAUL SCHERRER INSTITUT

o] -

SLS

The SLS driver.makefile

M Detects source files in directory

¢ All *.c, *.cc, *.st, *.stt In source directory
< But files can also be listed manually
¢ Driver module library is built for each release/arch

B Detects *.dbd files

¢ Files can also be listed manually
¢ Files are expanded and combined to a single dbd file

M Detects driver version number from CVS tags
& Modules are installed with version numbers




PAUL SCHERRER INSTITUT

o SLS

Driver module version handling

B Generate version number from CVS tag (e.g. driver 1 2 3)

M nstall all files (lib, dbd, include) with version numbers
¢ driverlLib-1.2.3, driver-1.2.3.dbd, driver-1.2.3.h

B Set symbolic links to highest versions
& driverLib -> driverLib-1.2.3
& driverLib-1 -> driverLib-1.2.3
& driverLib-1.2 -> driverLib-1.2.3

M [nstall test version driverLib-test if any source file Is untagged
¢ No symbolic links for test versions




PAUL SCHERRER INSTITUT

o SLS

Why loading drivers dynamically?

B We install projects on more than one 10C
and more than one project on an I0C
& Projects require drivers
¢ Projects should be independent
¢ Each project has its own startup script

B \We don’t want monolithic library with all drivers included
¢ Difficult to maintain (rebuilding, distributing version)
¢ How to handle test versions?
¢ At least on vxWorks, it is easy to load a module with 1d




PAUL SCHERRER INSTITUT

o SLS

Loading driver modules

M Just Id < driverLib s not enough
¢ Also load module dbd file (dr1ver .dbd) if it exists
¢ R3.14: register driver, device support, etc. to iocsh
¢ Prevent duplicate loading (of different versions)

B New command require “driver" [, "version'"]

¢ Checks if driver module has already been loaded

® YES: Check version number (mismatch: abort startup script)

® NO: Load library with 1d
load dbd file with dbLoadDatabase
R3.14: calldriver_registerRecordDeviceDriver()




PAUL SCHERRER INSTITUT

o SLS

Non-vxWorks implementation (R3.14)

M Build driver module as LOADABLE_LIBRARY
Including driver_registerRecordDeviceDriver.cpp

M Linux (any Unix?):
¢ driver module is built as shared library libdriver.so
¢ 1d() loads library with dlopen()

¢ require() finds register function with dsym()

B Windows (not yet implemented):

& driver module is build as driver.dll
¢ 1d() loads library with LoadLibrary()

¢ require() finds register function with GetProcAddress()




PAUL SCHERRER INSTITUT

o SLS

Unsolved problems

® Windows
¢ | have no clue how DLLs in Windows work
¢ R3.14.7 base does not compile properly with cygwin gcc
¢ No loadable library support for cygwin
¢ | could not yet build loadable libraries with Visual Studio compiler

END




