
Loadable driver modules

Building drivers for multiple releases of EPICS
Loading drivers dynamically from startup script

What’s the problem?

Some facilities use more than one EPICS release
Historical reasons (“Never touch a running system.”)
Third party code (no sources available)

Drivers should be built for all EPICS releases in parallel
Custom record types and other code as well
The same (latest/best) driver version should be available

But EPICS build facility is related to one EPICS release
$(TOP)/config/RELEASE file (in R3.13)

Duplicating source code is error-prone

How to solve the problem?

Generic version independent makefile recursively calls EPICS
build facility for all installed releases
Change name of temporary build directory

old: O.<arch>
new: O.<release>_<arch>

Generic makefile can do even more:
find out what to compile/install
build a loadable library from it
install driver library and dbd with version handling

The SLS driver.makefile

Detects source files in directory
All *.c, *.cc, *.st, *.stt in source directory
But files can also be listed manually
Driver module library is built for each release/arch

Detects *.dbd files
Files can also be listed manually
Files are expanded and combined to a single dbd file

Detects driver version number from CVS tags
Modules are installed with version numbers

Driver module version handling

Generate version number from CVS tag (e.g. driver_1_2_3)
Install all files (lib, dbd, include) with version numbers

driverLib-1.2.3, driver-1.2.3.dbd, driver-1.2.3.h
Set symbolic links to highest versions

driverLib -> driverLib-1.2.3
driverLib-1 -> driverLib-1.2.3
driverLib-1.2 -> driverLib-1.2.3

Install test version driverLib-test if any source file is untagged
No symbolic links for test versions

Why loading drivers dynamically?

We install projects on more than one IOC
and more than one project on an IOC

Projects require drivers
Projects should be independent
Each project has its own startup script

We don’t want monolithic library with all drivers included
Difficult to maintain (rebuilding, distributing version)
How to handle test versions?
At least on vxWorks, it is easy to load a module with ld

Loading driver modules

Just ld < driverLib is not enough
Also load module dbd file (driver.dbd) if it exists
R3.14: register driver, device support, etc. to iocsh
Prevent duplicate loading (of different versions)

New command require "driver" [, "version"]

Checks if driver module has already been loaded
YES: Check version number (mismatch: abort startup script)
NO: Load library with ld

load dbd file with dbLoadDatabase
R3.14: call driver_registerRecordDeviceDriver()

Non-vxWorks implementation (R3.14)

Build driver module as LOADABLE_LIBRARY
including driver_registerRecordDeviceDriver.cpp
Linux (any Unix?):

driver module is built as shared library libdriver.so
ld() loads library with dlopen()
require() finds register function with dlsym()

Windows (not yet implemented):
driver module is build as driver.dll
ld() loads library with LoadLibrary()
require() finds register function with GetProcAddress()

Unsolved problems

Windows
I have no clue how DLLs in Windows work
R3.14.7 base does not compile properly with cygwin gcc
No loadable library support for cygwin
I could not yet build loadable libraries with Visual Studio compiler

END

